图像特征匹配是基于内容的图像检索(Content-based image retrieval,CBIR)实现的一个关键环节,而图像特征的匹配主要依赖于图像特征之间的相似度测量。为了提高CBIR的检索性能,本文提出了一种有效的相似度测量方法——基于图像k近邻的...图像特征匹配是基于内容的图像检索(Content-based image retrieval,CBIR)实现的一个关键环节,而图像特征的匹配主要依赖于图像特征之间的相似度测量。为了提高CBIR的检索性能,本文提出了一种有效的相似度测量方法——基于图像k近邻的相似度测量(Similarity measure based on k-nearest neighbors of images,SBkNN)方法。在该方法中,查询图像与被检索图像的相似度通过计算这两幅图像属于同一语义(无论是哪种语义)种类的联合概率来衡量,而此概率可分别通过分析这两幅图像与各自近邻图像的距离得到。最后利用Corel5k数据集对本文所提出的SBkNN方法和传统的相似度测量方法进行了对比。实验结果表明,在CBIR中使用本文提出的SBkNN方法,有效地提高了CBIR的检索性能。展开更多
文摘图像特征匹配是基于内容的图像检索(Content-based image retrieval,CBIR)实现的一个关键环节,而图像特征的匹配主要依赖于图像特征之间的相似度测量。为了提高CBIR的检索性能,本文提出了一种有效的相似度测量方法——基于图像k近邻的相似度测量(Similarity measure based on k-nearest neighbors of images,SBkNN)方法。在该方法中,查询图像与被检索图像的相似度通过计算这两幅图像属于同一语义(无论是哪种语义)种类的联合概率来衡量,而此概率可分别通过分析这两幅图像与各自近邻图像的距离得到。最后利用Corel5k数据集对本文所提出的SBkNN方法和传统的相似度测量方法进行了对比。实验结果表明,在CBIR中使用本文提出的SBkNN方法,有效地提高了CBIR的检索性能。