为提高电压源高压直流输电系统(voltage source converter-high voltage direct current,VSC-HVDC)受扰时的动态性能,提出一种可预测不确定度上界的反步变结构控制策略.通过分析电压源变流器dq0坐标下的数学模型,应用传统反步设计方法,...为提高电压源高压直流输电系统(voltage source converter-high voltage direct current,VSC-HVDC)受扰时的动态性能,提出一种可预测不确定度上界的反步变结构控制策略.通过分析电压源变流器dq0坐标下的数学模型,应用传统反步设计方法,获得系统变流器控制策略:为消除系统实际运行中的扰动影响,加入一个含有不确定度PI预测方案的变结构控制环节,使各子系统受扰时仍能满足Lyapunov渐近稳定条件.基于MATLAB/Simulink环境,研究了VSC-HVDC系统交流侧两相短路故障工况,仿真结果表明,采用所提控制策略的控制效果优于传统双闭环PI矢量控制,并可进一步提高VSC-HVDC系统的动态性能,系统鲁棒性增强.展开更多
文摘为提高电压源高压直流输电系统(voltage source converter-high voltage direct current,VSC-HVDC)受扰时的动态性能,提出一种可预测不确定度上界的反步变结构控制策略.通过分析电压源变流器dq0坐标下的数学模型,应用传统反步设计方法,获得系统变流器控制策略:为消除系统实际运行中的扰动影响,加入一个含有不确定度PI预测方案的变结构控制环节,使各子系统受扰时仍能满足Lyapunov渐近稳定条件.基于MATLAB/Simulink环境,研究了VSC-HVDC系统交流侧两相短路故障工况,仿真结果表明,采用所提控制策略的控制效果优于传统双闭环PI矢量控制,并可进一步提高VSC-HVDC系统的动态性能,系统鲁棒性增强.