为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标...为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。展开更多
文摘为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。