期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
温湿度变化对车用燃料电池输出性能的影响
1
作者 乔雨田 刘永峰 +3 位作者 禹永帅 张璐 姚圣卓 裴普成 《储能科学与技术》 CAS CSCD 北大核心 2024年第3期870-878,共9页
研究温湿度变化对车用燃料电池输出性能(输出电压和功率)的影响可为高精度进气控制策略提供有效的依据。本工作提出了一个温湿度-电流(temperature and relative humidity-current,TRH-C)模型,该模型考虑了电池内部电化学反应、电渗迁... 研究温湿度变化对车用燃料电池输出性能(输出电压和功率)的影响可为高精度进气控制策略提供有效的依据。本工作提出了一个温湿度-电流(temperature and relative humidity-current,TRH-C)模型,该模型考虑了电池内部电化学反应、电渗迁移和加湿冷凝三部分水来源,揭示了电流随温湿度变化规律和由水活度表征的电渗迁移系数计算式。根据电池流道实物在计算软件COMSOL中建立网格,将TRH-C模型导入并应用有限体积法进行计算;搭建了燃料电池测试系统,在工作温度60℃和70℃、相对湿度分别为50%和100%条件下进行了实验并进行数据处理;并对通过TRH-C模型得到的极化曲线与实验数据进行比较,分析了电流密度和膜水含量分布云图。结果表明,TRH-C模型能预测燃料电池的性能,在工作温度为60℃、相对湿度为50%时,电压和功率密度的相对误差最大(电流密度为0.018 A/cm^(2)),分别为3.674%和3.696%。工作温度升高会导致膜水含量降低,但相对湿度增大会导致膜水含量升高。 展开更多
关键词 温湿度 车用燃料电池 电流密度分布 水含量
下载PDF
阴极相对湿度对PEMFC电解质水含量及性能的影响 被引量:2
2
作者 禹永帅 刘永峰 +2 位作者 裴普成 张璐 姚圣卓 《储能科学与技术》 CAS CSCD 北大核心 2023年第6期1755-1764,共10页
质子交换膜燃料电池(PEMFC)工作过程中必须确保电解质的充分水合,且要避免凝结的液态水阻塞传质通道。为探究进气相对湿度对PEMFC电解质水含量及输出性能的影响,提出了阴极进气水含量(CIWC)模型。该模型考虑了膜电阻受温度和水含量的影... 质子交换膜燃料电池(PEMFC)工作过程中必须确保电解质的充分水合,且要避免凝结的液态水阻塞传质通道。为探究进气相对湿度对PEMFC电解质水含量及输出性能的影响,提出了阴极进气水含量(CIWC)模型。该模型考虑了膜电阻受温度和水含量的影响,推导了电解质水含量计算公式,将CIWC模型耦合进计算流体力学软件Fluent中进行计算。搭建了燃料电池测试平台,在工作温度为60℃,阳极相对湿度100%,阴极相对湿度50%、75%、100%工况下进行实验。将CIWC模型、Fluent内置模型的仿真值与实验值进行比较,并分析阴极侧电解质水含量、膜的电导率、水的摩尔分数分布。结果表明:当阴极相对湿度50%,电压为0.739 V时,CIWC模型精度比Fluent模型提高了17.67%;当阴极相对湿度100%时,CIWC模型与实验值最大相对误差为5.66%。随着阴极进气相对湿度的增加,电解质水含量在电压为0.75 V时不断增大,电压为0.6 V时趋于饱和,从空气入口到出口,电解质水含量、质子电导率、催化层水的摩尔分数沿着流场方向逐渐增大;当阴极相对湿度75%时,电解质水含量分布更均匀,电池输出功率密度最高为272.08 mW/cm^(2)。 展开更多
关键词 质子交换膜燃料电池 电解质水含量 相对湿度 数值模拟
下载PDF
相对湿度对PEMFC加载过程中动态响应的影响分析 被引量:1
3
作者 刘永峰 张璐 +2 位作者 裴普成 刘鑫桐 禹永帅 《汽车安全与节能学报》 CAS CSCD 北大核心 2023年第1期89-97,共9页
为研究电流阶跃变化过程中相对湿度对质子交换膜燃料电池(PEMFC)动态性能的影响,提出动态传热(DHT)数值模型。该模型考虑了相对湿度和阶跃电流对输出电压的影响,揭示出电流阶跃变化条件下相对湿度对质子交换膜(PEM)内水含量和电流密度... 为研究电流阶跃变化过程中相对湿度对质子交换膜燃料电池(PEMFC)动态性能的影响,提出动态传热(DHT)数值模型。该模型考虑了相对湿度和阶跃电流对输出电压的影响,揭示出电流阶跃变化条件下相对湿度对质子交换膜(PEM)内水含量和电流密度分布的响应规律。通过自定义函数(UDF)将DHT模型导入Fluent软件并应用有限体积法进行计算;对工作温度60℃、负载电流的加载幅值5 A、阴极相对湿度100%、阳极相对湿度50%和100%条件下的PEMFC动态响应性能进行了评价;并将通过DHT模型得到的极化曲线和输出电压响应结果与实验数据进行了比较。结果表明:当阴极相对湿度为100%,阳极相对湿度100%的输出电压及最大功率密度优于50%相对湿度;阳极相对湿度为100%时,DHT模型与实验所得极化曲线间误差为2.18%;电流密度的分布与PEM膜内水含量和阳极侧气体加湿程度有关,阳极侧相对湿度提高,跨膜的电流密度分布均匀性下降;当阳极侧相对湿度为50%、100%时,加载前后膜内水含量分布的极差值分别为2.9和3.1 kmol/m^(3)、3和4.2 kmol/m^(3)。 展开更多
关键词 质子交换膜燃料电池(PEMFC) 动态传热(DHT) 动态响应 相对湿度 电流密度分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部