硅基光子器件在光通信、光互连以及光计算领域均具有重要的作用。利用载流子色散效应,采用反向pn结构的硅基微环调制器,实现10 Gbit/s不归零码(Not Return to Zero,NRZ)信号的产生。同时,以此光调制器为核心器件,利用Optisystem和Matla...硅基光子器件在光通信、光互连以及光计算领域均具有重要的作用。利用载流子色散效应,采用反向pn结构的硅基微环调制器,实现10 Gbit/s不归零码(Not Return to Zero,NRZ)信号的产生。同时,以此光调制器为核心器件,利用Optisystem和Matlab搭建10 Gbit/s NRZ传输系统并协同仿真分析在不同光纤传输长度和驱动信号下NRZ信号的系统性能。仿真结果表明:当加载幅度为5 V方波信号时,产生调幅信号的消光比为25.2 d B,最大传输距离为22.8 km,相应的系统功率损失为7.58 d B。展开更多
文摘硅基光子器件在光通信、光互连以及光计算领域均具有重要的作用。利用载流子色散效应,采用反向pn结构的硅基微环调制器,实现10 Gbit/s不归零码(Not Return to Zero,NRZ)信号的产生。同时,以此光调制器为核心器件,利用Optisystem和Matlab搭建10 Gbit/s NRZ传输系统并协同仿真分析在不同光纤传输长度和驱动信号下NRZ信号的系统性能。仿真结果表明:当加载幅度为5 V方波信号时,产生调幅信号的消光比为25.2 d B,最大传输距离为22.8 km,相应的系统功率损失为7.58 d B。