随着射频识别(Radio Frequency Identification,RFID)技术的飞速发展,在各种特殊的环境下(如工厂、仓库、监狱等),对RFID阅读器天线优化部署的需求开始受到广泛关注。针对目前RFID阅读器天线部署中存在的部署难度大、约束条件多且不易...随着射频识别(Radio Frequency Identification,RFID)技术的飞速发展,在各种特殊的环境下(如工厂、仓库、监狱等),对RFID阅读器天线优化部署的需求开始受到广泛关注。针对目前RFID阅读器天线部署中存在的部署难度大、约束条件多且不易找到最优解和Pareto前沿等问题,文中提出了一种基于改进型多目标樽海鞘群算法(Multi-objective Salp Swarm Algorithm,MSSA)的RFID阅读器天线优化部署方法。预先构建多目标RFID阅读器天线优化部署模型,设定优化目标;多目标樽海鞘群算法对RFID阅读器天线优化部署模型进行优化训练,引入分离算子以优化搜索能力,并通过迭代不断寻找满足条件的非支配解,构建满足条件的Pareto解集,其即为优化的结果。实验数据表明,MSSA算法求解时无需先验知识和设置加权系数,收敛速度快;在相同实验环境下,MSSA算法与带观察者机制的蝙蝠(BA-OM)算法、粒子群(PSO)算法、细菌觅食优化(MC-BFO)算法相比,覆盖率分别提高了33%,28%,20%;与同类型的求Pareto解集的混合萤火虫(HMOFA)算法相比,MSSA算法的负载均衡提高了7.14%,经济效益提高了59.74%,阅读器干扰减少34.04%。展开更多
随着物联网技术的飞速发展,射频识别(Radio Frequency Identification,RFID)系统因具有非接触、快速识别等优点而成为了解决物联网问题的首选方案。RFID网络规划问题要考虑多个目标,被证明是多目标优化的问题。群体智能(Swarm Intellige...随着物联网技术的飞速发展,射频识别(Radio Frequency Identification,RFID)系统因具有非接触、快速识别等优点而成为了解决物联网问题的首选方案。RFID网络规划问题要考虑多个目标,被证明是多目标优化的问题。群体智能(Swarm Intelligence,SI)算法在解决多目标优化问题方面得到了广泛的关注。文中提出了一种改进型灰狼算法(Improved Grey Wolf Optimizer,IGWO),利用高斯变异算子和惯性常量策略来实现RFID网络规划。通过建立优化模型,在满足标签100%覆盖率、部署更少的阅读器、避免信号干扰、消耗更少的功率4个目标的基础上,将所提算法与粒子群算法(Particle Swarm Optimization,PSO)、遗传算法(Genetic Algorithm,GA)、帝王蝶算法(Monarch Butterfly Algorithm,MMBO)进行了对比分析。实验结果表明,灰狼算法在RFID网络规划时表现更优异,在相同的实验环境下,相较于其他算法,IGWO的适应度值比GA提高了20.2%,比PSO提高了13.5%,比MMBO提高了9.66%;并且覆盖的标签数更多,可以更有效地求出最优化方案。展开更多