为了定量表征不同壳层材料对芯壳结构竹塑复合材料冲击断口复杂程度的影响,以造纸剩余物竹屑和高密度聚乙烯(high density polyethylene,HDPE)作为芯层材料,以纯HDPE、竹浆纤维/HDPE、纳米碳酸钙/HDPE和白泥/HDPE分别作为壳层材料,采用...为了定量表征不同壳层材料对芯壳结构竹塑复合材料冲击断口复杂程度的影响,以造纸剩余物竹屑和高密度聚乙烯(high density polyethylene,HDPE)作为芯层材料,以纯HDPE、竹浆纤维/HDPE、纳米碳酸钙/HDPE和白泥/HDPE分别作为壳层材料,采用熔融共挤工艺制备芯壳结构竹塑复合材料。在室温(23℃)环境下,测试了复合材料无缺口冲击强度,采用扫描电镜对4种不同壳层材料断口进行形貌分析,基于分形理论和图像处理技术,运用像素点法计算了复合材料的冲击断口表面分形维数,考察了复合材料断口表面分形维数和冲击强度的关系。结果表明,不同壳层材料的芯壳结构竹塑复合材料冲击断口表面分形维数存在一定差异,壳层为HDPE的复合材料断口表面分形维数最大,为2.2204,壳层为白泥/HDPE的分形维数最小,为2.2075。不同壳层复合材料冲击断口表面分形维数拟合曲线的决定系数均大于0.98,说明复合材料断口表面分形特征显著。并且,复合材料断口表面分形维数与冲击强度之间拟合曲线的决定系数为0.9857,近似呈指数函数关系。研究结果为进一步深入研究芯壳结构竹塑复合材料的表面微观结构提供参考。展开更多
文摘为了定量表征不同壳层材料对芯壳结构竹塑复合材料冲击断口复杂程度的影响,以造纸剩余物竹屑和高密度聚乙烯(high density polyethylene,HDPE)作为芯层材料,以纯HDPE、竹浆纤维/HDPE、纳米碳酸钙/HDPE和白泥/HDPE分别作为壳层材料,采用熔融共挤工艺制备芯壳结构竹塑复合材料。在室温(23℃)环境下,测试了复合材料无缺口冲击强度,采用扫描电镜对4种不同壳层材料断口进行形貌分析,基于分形理论和图像处理技术,运用像素点法计算了复合材料的冲击断口表面分形维数,考察了复合材料断口表面分形维数和冲击强度的关系。结果表明,不同壳层材料的芯壳结构竹塑复合材料冲击断口表面分形维数存在一定差异,壳层为HDPE的复合材料断口表面分形维数最大,为2.2204,壳层为白泥/HDPE的分形维数最小,为2.2075。不同壳层复合材料冲击断口表面分形维数拟合曲线的决定系数均大于0.98,说明复合材料断口表面分形特征显著。并且,复合材料断口表面分形维数与冲击强度之间拟合曲线的决定系数为0.9857,近似呈指数函数关系。研究结果为进一步深入研究芯壳结构竹塑复合材料的表面微观结构提供参考。