The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been considered for constant initial data having discontinuities on three rays with vertex at the origin...The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been considered for constant initial data having discontinuities on three rays with vertex at the origin. The solutions are constructed for some one-J and non-R initial data. One kind of new discontinuity, which is labelled as the delta-shock wave, appears in some solutions. The delta-shock wave is a discontinuity plane that is the suport of a generalized function.展开更多
This paper gives the kinetic formation of multi-dimensional conservation laws and proves the compactness of velocity averages by employing the compactness theorem in L(loc)(1)(R(n) x R(t)). As a by product, the existe...This paper gives the kinetic formation of multi-dimensional conservation laws and proves the compactness of velocity averages by employing the compactness theorem in L(loc)(1)(R(n) x R(t)). As a by product, the existence and uniqueness of the generalized solution is obtained.展开更多
In this paper we have obtained the existence of weak solutions of the small disturbance equations of steady two-dimension flow [GRAPHICS] with Riemann date [GRAPHICS] where v+ greater-than-or-equal-to 0, v- greater-th...In this paper we have obtained the existence of weak solutions of the small disturbance equations of steady two-dimension flow [GRAPHICS] with Riemann date [GRAPHICS] where v+ greater-than-or-equal-to 0, v- greater-than-or-equal-to 0 and u- less-than-or-equal-to u+ by introducing 'artificial' viscosity terms and employing Helley's theorem. The setting under our consideration is a nonstrictly hyperbolic system. our analysis in this article is quite fundamental.展开更多
The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical...The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical shockwaves, which are labelled as delta-shock waves, appear in some solutions. The solutions have been obtained are not unique. Due to the specific property of the system considered, there are no rarefaction waves in solution. This paper is divided into three parts. The first part constructs Riemann solutions for initial data involving two contact discontinuities while the second considers the case for other initial data. The last part briefly discusses the non-uniqueness of the solutions.展开更多
In this paper we obtain the existence of the generalized solutions to the Cauchy problem for a model of combustion provided that the function f is of nonconvexity and initial values lie in the bounded, measurable class.
文摘The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been considered for constant initial data having discontinuities on three rays with vertex at the origin. The solutions are constructed for some one-J and non-R initial data. One kind of new discontinuity, which is labelled as the delta-shock wave, appears in some solutions. The delta-shock wave is a discontinuity plane that is the suport of a generalized function.
文摘This paper gives the kinetic formation of multi-dimensional conservation laws and proves the compactness of velocity averages by employing the compactness theorem in L(loc)(1)(R(n) x R(t)). As a by product, the existence and uniqueness of the generalized solution is obtained.
文摘In this paper we have obtained the existence of weak solutions of the small disturbance equations of steady two-dimension flow [GRAPHICS] with Riemann date [GRAPHICS] where v+ greater-than-or-equal-to 0, v- greater-than-or-equal-to 0 and u- less-than-or-equal-to u+ by introducing 'artificial' viscosity terms and employing Helley's theorem. The setting under our consideration is a nonstrictly hyperbolic system. our analysis in this article is quite fundamental.
文摘The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical shockwaves, which are labelled as delta-shock waves, appear in some solutions. The solutions have been obtained are not unique. Due to the specific property of the system considered, there are no rarefaction waves in solution. This paper is divided into three parts. The first part constructs Riemann solutions for initial data involving two contact discontinuities while the second considers the case for other initial data. The last part briefly discusses the non-uniqueness of the solutions.
文摘In this paper we obtain the existence of the generalized solutions to the Cauchy problem for a model of combustion provided that the function f is of nonconvexity and initial values lie in the bounded, measurable class.