目的研究补肾壮骨颗粒是否通过提高快速老化小鼠(P6)局部骨组织GH/IGF-1轴的基因表达水平从而提高骨密度。方法实验分4组:R1小鼠生理盐水灌胃组(R1组),P6小鼠分为生理盐水灌胃组(P6空组)、皮下rh GH组(rh GH组)和补肾壮骨颗粒灌胃组(补...目的研究补肾壮骨颗粒是否通过提高快速老化小鼠(P6)局部骨组织GH/IGF-1轴的基因表达水平从而提高骨密度。方法实验分4组:R1小鼠生理盐水灌胃组(R1组),P6小鼠分为生理盐水灌胃组(P6空组)、皮下rh GH组(rh GH组)和补肾壮骨颗粒灌胃组(补肾组),每组各10只,每日干预1次。分别干预3、6个月后进行骨密度测量和胫骨GH m RNA及IGF-1 m RNA表达水平检测。结果干预3个月后,骨密度比较:R1组及补肾组高于P6空组;rh GH组与P6空组比较差异无统计学意义。GH m RNA和IGF-1 m RNA表达水平比较:R1组、rh GH组及补肾组均高于P6空组。干预6个月后,骨密度比较:rh GH组及补肾组较P6空组提高。GH m RNA和IGF-1 m RNA表达水平比较:GH组及补肾组较P6空组均有所上升。4组GH m RNA表达水平与IGF-1 m RNA表达水平呈正相关。P6各组GH m RNA、IGF-1 m RNA表达水平与全身各部位骨密度呈正相关。结论补肾壮骨颗粒可以提高P6小鼠全身各部位的骨密度,其作用机制可能与提高局部骨组织GH m RNA与IGF-1 m RNA表达水平有关。展开更多
A double fluid model for a liquid jet surrounded by a coaxial gas stream was constructed. The interfacial stability of the model was studied by Chebyshev pseudospectral method for different basic velocity profiles. Th...A double fluid model for a liquid jet surrounded by a coaxial gas stream was constructed. The interfacial stability of the model was studied by Chebyshev pseudospectral method for different basic velocity profiles. The physical variables were mapped into computational space using a nonlinear coordinates transformation. The general eigenvalues of the dispersion relation obtained are solved by QZ method, and the basic characteristics and their dependence on the flow parameters are analyzed.展开更多
文摘目的研究补肾壮骨颗粒是否通过提高快速老化小鼠(P6)局部骨组织GH/IGF-1轴的基因表达水平从而提高骨密度。方法实验分4组:R1小鼠生理盐水灌胃组(R1组),P6小鼠分为生理盐水灌胃组(P6空组)、皮下rh GH组(rh GH组)和补肾壮骨颗粒灌胃组(补肾组),每组各10只,每日干预1次。分别干预3、6个月后进行骨密度测量和胫骨GH m RNA及IGF-1 m RNA表达水平检测。结果干预3个月后,骨密度比较:R1组及补肾组高于P6空组;rh GH组与P6空组比较差异无统计学意义。GH m RNA和IGF-1 m RNA表达水平比较:R1组、rh GH组及补肾组均高于P6空组。干预6个月后,骨密度比较:rh GH组及补肾组较P6空组提高。GH m RNA和IGF-1 m RNA表达水平比较:GH组及补肾组较P6空组均有所上升。4组GH m RNA表达水平与IGF-1 m RNA表达水平呈正相关。P6各组GH m RNA、IGF-1 m RNA表达水平与全身各部位骨密度呈正相关。结论补肾壮骨颗粒可以提高P6小鼠全身各部位的骨密度,其作用机制可能与提高局部骨组织GH m RNA与IGF-1 m RNA表达水平有关。
文摘A double fluid model for a liquid jet surrounded by a coaxial gas stream was constructed. The interfacial stability of the model was studied by Chebyshev pseudospectral method for different basic velocity profiles. The physical variables were mapped into computational space using a nonlinear coordinates transformation. The general eigenvalues of the dispersion relation obtained are solved by QZ method, and the basic characteristics and their dependence on the flow parameters are analyzed.