通过研究基因表达数据发现与特定疾病相关的关联规则,对疾病辅助诊断有重要的意义。针对现有分类结果可解释性的不足,提出一种基于关联规则的基因表达数据分类模型ASSO-SVM(ASSOciation rule based Support Vector Machine)。在该模型中...通过研究基因表达数据发现与特定疾病相关的关联规则,对疾病辅助诊断有重要的意义。针对现有分类结果可解释性的不足,提出一种基于关联规则的基因表达数据分类模型ASSO-SVM(ASSOciation rule based Support Vector Machine)。在该模型中,关联规则作为一种特征选择方法,用于提取基因之间的非线性关联。通过这些非线性关联所获取的先验知识有利于提高分类结果的可解释性。另外,针对基因表达数据高维、小样本的特性,该方法采用支持向量机作为对基因表达数据的分类器,获得较高的分类精度。ASSO-SVM结合了基因表达关联规则以及支持向量机分类的优点。在实际基因表达数据集上与现有分类模型的对比实验验证了该方法的有效性。展开更多
文摘通过研究基因表达数据发现与特定疾病相关的关联规则,对疾病辅助诊断有重要的意义。针对现有分类结果可解释性的不足,提出一种基于关联规则的基因表达数据分类模型ASSO-SVM(ASSOciation rule based Support Vector Machine)。在该模型中,关联规则作为一种特征选择方法,用于提取基因之间的非线性关联。通过这些非线性关联所获取的先验知识有利于提高分类结果的可解释性。另外,针对基因表达数据高维、小样本的特性,该方法采用支持向量机作为对基因表达数据的分类器,获得较高的分类精度。ASSO-SVM结合了基因表达关联规则以及支持向量机分类的优点。在实际基因表达数据集上与现有分类模型的对比实验验证了该方法的有效性。