Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transi...Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure.展开更多
Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on t...Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on the Sn surface segregation of Ge1-xSnx films is investigated by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The x-ray diffraction (XRD) is also performed to determine the crystallinities of the Ge1-xSnx films. The experimental results indicate that root mean square (RMS) values of the annealed samples are comparatively small and have no noticeable changes for the as-grown sample when annealing temperature is below 400℃. The diameter of the Sn three-dimensional (3D) island becomes larger than that of an as-grown sample when the annealing temperature is 700℃. In addition, the Sn surface composition decreases when annealing temperature ranges from 400℃ to 700℃. However, Sn bulk compositions in samples A and B are kept almost unchanged when the annealing temperature is below 600℃. The present investigation demonstrates that the crystallinity of Ge1-xSnx/Si (111) has no obvious advantage over that of Ge1-xSnx/Si (100) and the selection of Si (111) substrate is an effective method to improve the surface morphologies of Ge1-xSnx films. We also find that more severe Sn surface segregation occurs in the Ge1-xSnx/Si (111) sample during annealing than in the Ge1-xSnx/Si (100) sample.展开更多
The analysis of threading dislocation density (TDD) in Ge-on-Si layer is critical for developing lasers, light emitting diodes (LEDs), photodetectors (PDs), modulators, waveguides, metal oxide semiconductor fiel...The analysis of threading dislocation density (TDD) in Ge-on-Si layer is critical for developing lasers, light emitting diodes (LEDs), photodetectors (PDs), modulators, waveguides, metal oxide semiconductor field effect transistors (MOSFETs), and also the integration of Si-based monolithic photonics. The TDD of Ge epitaxial layer is analyzed by etching or transmission electron microscope (TEM). However, high-resolution x-ray diffraction (HR-XRD) rocking curve provides an optional method to analyze the TDD in Ge layer. The theory model of TDD measurement from rocking curves was first used in zinc-blende semiconductors. In this paper, this method is extended to the case of strained Ge-on-Si layers. The HR-XRD 2θ/ω scan is measured and Ge (004) single crystal rocking curve is utilized to calculate the TDD in strained Ge epitaxial layer. The rocking curve full width at half maximum (FWHM) broadening by incident beam divergence of the instrument, crystal size, and curvature of the crystal specimen is subtracted. The TDDs of samples A and B are calculated to be 1.41108 cm-2 and 6.47108 cm-2, respectively. In addition, we believe the TDDs calculated by this method to be the averaged dislocation density in the Ge epitaxial layer.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62004119 and 62201332)the Applied Basic Research Plan of Shanxi Province, China (Grant Nos. 20210302124647 and 20210302124028)。
文摘Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61474085 and 61704130)the Science Research Plan in Shaanxi Province,China(Grant No.2016GY-085)+1 种基金the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences(Grant No.90109162905)the Fundamental Research Funds for the Central Universities,China(Grant No.61704130)
文摘Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on the Sn surface segregation of Ge1-xSnx films is investigated by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The x-ray diffraction (XRD) is also performed to determine the crystallinities of the Ge1-xSnx films. The experimental results indicate that root mean square (RMS) values of the annealed samples are comparatively small and have no noticeable changes for the as-grown sample when annealing temperature is below 400℃. The diameter of the Sn three-dimensional (3D) island becomes larger than that of an as-grown sample when the annealing temperature is 700℃. In addition, the Sn surface composition decreases when annealing temperature ranges from 400℃ to 700℃. However, Sn bulk compositions in samples A and B are kept almost unchanged when the annealing temperature is below 600℃. The present investigation demonstrates that the crystallinity of Ge1-xSnx/Si (111) has no obvious advantage over that of Ge1-xSnx/Si (100) and the selection of Si (111) substrate is an effective method to improve the surface morphologies of Ge1-xSnx films. We also find that more severe Sn surface segregation occurs in the Ge1-xSnx/Si (111) sample during annealing than in the Ge1-xSnx/Si (100) sample.
基金Project supported by the Research Plan in Shaanxi Province,China(Grant No.2016GY-085)the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences(Grant No.90109162905)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.17-H863-04-ZT-001-019-01)the National Natural Science Foundation of China(Grant Nos.61704130 and 61474085)
文摘The analysis of threading dislocation density (TDD) in Ge-on-Si layer is critical for developing lasers, light emitting diodes (LEDs), photodetectors (PDs), modulators, waveguides, metal oxide semiconductor field effect transistors (MOSFETs), and also the integration of Si-based monolithic photonics. The TDD of Ge epitaxial layer is analyzed by etching or transmission electron microscope (TEM). However, high-resolution x-ray diffraction (HR-XRD) rocking curve provides an optional method to analyze the TDD in Ge layer. The theory model of TDD measurement from rocking curves was first used in zinc-blende semiconductors. In this paper, this method is extended to the case of strained Ge-on-Si layers. The HR-XRD 2θ/ω scan is measured and Ge (004) single crystal rocking curve is utilized to calculate the TDD in strained Ge epitaxial layer. The rocking curve full width at half maximum (FWHM) broadening by incident beam divergence of the instrument, crystal size, and curvature of the crystal specimen is subtracted. The TDDs of samples A and B are calculated to be 1.41108 cm-2 and 6.47108 cm-2, respectively. In addition, we believe the TDDs calculated by this method to be the averaged dislocation density in the Ge epitaxial layer.