Two series of Cdl-xInxNNi3 (0 〈 x 〈 0.2) and Cd1_yCuyNNi3 (0 〈 y 〈 0.2) samples were prepared from CdO, In203, CuO, and nickel powders under NH3 atmosphere at 773 K. The structural and physical properties were...Two series of Cdl-xInxNNi3 (0 〈 x 〈 0.2) and Cd1_yCuyNNi3 (0 〈 y 〈 0.2) samples were prepared from CdO, In203, CuO, and nickel powders under NH3 atmosphere at 773 K. The structural and physical properties were investigated by means of X-ray powder diffraction temperature-dependent resistivity and magnetic measurements. X-ray powder diffraction results showed that the Cd1-xInxNNi3 and Cd1_yCuyNNi3 compounds have a typical antiperovskite structure, and the CdNNi3, Cd0.9In0.1NNi3, and Cd0.9Cu0.1NNia compounds show metallic temperature-dependent resistivity and exhibit a Fermi liquid behavior at low temperature. In contrast to the paramagnetism previously reported, the CdNNi3 sample exhibits very soft and weak ferromagnetism, and no superconductivity was found in the Cd1-xInxNNi3 and Cdl-yCuyNNi3 samples down to 2 K. Each sample exhibited very soft and weak ferromagnetism, and the temperature dependence of the magnetization of the Cd1-xInxNNi3 and Cd1_yCuyNNi3 samples can be well fitted to the combination of a Bloch term and a Curie-Weiss term.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 20871119), the National Basic Research Program of China (973 Program) (Grant Nos. 2011CBA00112 and 2011CB808202), and the Natural Science Foundation of Luzhou Medical College.
文摘Two series of Cdl-xInxNNi3 (0 〈 x 〈 0.2) and Cd1_yCuyNNi3 (0 〈 y 〈 0.2) samples were prepared from CdO, In203, CuO, and nickel powders under NH3 atmosphere at 773 K. The structural and physical properties were investigated by means of X-ray powder diffraction temperature-dependent resistivity and magnetic measurements. X-ray powder diffraction results showed that the Cd1-xInxNNi3 and Cd1_yCuyNNi3 compounds have a typical antiperovskite structure, and the CdNNi3, Cd0.9In0.1NNi3, and Cd0.9Cu0.1NNia compounds show metallic temperature-dependent resistivity and exhibit a Fermi liquid behavior at low temperature. In contrast to the paramagnetism previously reported, the CdNNi3 sample exhibits very soft and weak ferromagnetism, and no superconductivity was found in the Cd1-xInxNNi3 and Cdl-yCuyNNi3 samples down to 2 K. Each sample exhibited very soft and weak ferromagnetism, and the temperature dependence of the magnetization of the Cd1-xInxNNi3 and Cd1_yCuyNNi3 samples can be well fitted to the combination of a Bloch term and a Curie-Weiss term.