基于2018年的Sentinel-1雷达影像和Sentinel-2光学影像数据,采用面向对象技术获取影像的光谱、几何、纹理、自定义特征和多极化后向散射系数5个种类的90个特征变量,基于随机森林算法进行特征选择,并构建多种特征组合方案,利用随机森林...基于2018年的Sentinel-1雷达影像和Sentinel-2光学影像数据,采用面向对象技术获取影像的光谱、几何、纹理、自定义特征和多极化后向散射系数5个种类的90个特征变量,基于随机森林算法进行特征选择,并构建多种特征组合方案,利用随机森林分类器对保护区内的地物进行识别并提取红树林信息。结果表明:多特征耦合优化模式的分类效果最好,总体精度为89.60%,Kappa系数为0.8756,其中,红树林的制图精度与用户精度分别为96.39%、97.56%;识别出的茅尾海红树林面积为19.2 km 2,占整个研究区的2.67%。该研究揭示了Sentinel-1和Sentinel-2数据在红树林监测中的应用潜力。展开更多
文摘基于2018年的Sentinel-1雷达影像和Sentinel-2光学影像数据,采用面向对象技术获取影像的光谱、几何、纹理、自定义特征和多极化后向散射系数5个种类的90个特征变量,基于随机森林算法进行特征选择,并构建多种特征组合方案,利用随机森林分类器对保护区内的地物进行识别并提取红树林信息。结果表明:多特征耦合优化模式的分类效果最好,总体精度为89.60%,Kappa系数为0.8756,其中,红树林的制图精度与用户精度分别为96.39%、97.56%;识别出的茅尾海红树林面积为19.2 km 2,占整个研究区的2.67%。该研究揭示了Sentinel-1和Sentinel-2数据在红树林监测中的应用潜力。