提出了联合多分辨率表示的合成孔径雷达(SAR)目标识别方法。该方法首先根据SAR图像的成像机理构造原始图像的多分辨率表示。多分辨率表示以互补的方式由粗到精地描述了目标的特性,可以为后续的目标识别提供更丰富的鉴别力信息。为了充...提出了联合多分辨率表示的合成孔径雷达(SAR)目标识别方法。该方法首先根据SAR图像的成像机理构造原始图像的多分辨率表示。多分辨率表示以互补的方式由粗到精地描述了目标的特性,可以为后续的目标识别提供更丰富的鉴别力信息。为了充分利用多分辨率表示中蕴含的信息,采用联合稀疏表示对其进行分类。作为一种多任务学习算法,联合稀疏表示既可以有效表示各个分辨率上的表示还可以充分发掘各个分辨率之间的内在相关性。因此,结合多分辨率表示和联合稀疏表示分类器可以有效提高SAR目标识别性能。基于MSTAR(moving and stationary target acquisition and recognition)公共数据集在多种操作条件下进行了目标识别实验,充分验证了方法的有效性。展开更多
提出了联合多层次深度特征的合成孔径雷达(SAR)目标识别方法。采用卷积神经网络(CNN)学习SAR图像的多层次深度特征。多层次的深度特征从不同方面描述原始SAR图像中的目标特性,从而为目标识别提供更充分的决策依据。为了充分发掘不同层...提出了联合多层次深度特征的合成孔径雷达(SAR)目标识别方法。采用卷积神经网络(CNN)学习SAR图像的多层次深度特征。多层次的深度特征从不同方面描述原始SAR图像中的目标特性,从而为目标识别提供更充分的决策依据。为了充分发掘不同层次深度特征的独立特性以及它们之间的内在关联,采用联合稀疏表示对多层次的深度特征进行联合分类。根据各层次特征的整体重构误差判定目标类别。采用MSTAR (Moving and Stationary Target Acquisition and Recognition)公共数据集对提出方法进行了性能测试。实验结果表明,该方法的识别性能显著优于现有的SAR目标识别方法。展开更多
文摘提出了联合多分辨率表示的合成孔径雷达(SAR)目标识别方法。该方法首先根据SAR图像的成像机理构造原始图像的多分辨率表示。多分辨率表示以互补的方式由粗到精地描述了目标的特性,可以为后续的目标识别提供更丰富的鉴别力信息。为了充分利用多分辨率表示中蕴含的信息,采用联合稀疏表示对其进行分类。作为一种多任务学习算法,联合稀疏表示既可以有效表示各个分辨率上的表示还可以充分发掘各个分辨率之间的内在相关性。因此,结合多分辨率表示和联合稀疏表示分类器可以有效提高SAR目标识别性能。基于MSTAR(moving and stationary target acquisition and recognition)公共数据集在多种操作条件下进行了目标识别实验,充分验证了方法的有效性。
文摘提出了联合多层次深度特征的合成孔径雷达(SAR)目标识别方法。采用卷积神经网络(CNN)学习SAR图像的多层次深度特征。多层次的深度特征从不同方面描述原始SAR图像中的目标特性,从而为目标识别提供更充分的决策依据。为了充分发掘不同层次深度特征的独立特性以及它们之间的内在关联,采用联合稀疏表示对多层次的深度特征进行联合分类。根据各层次特征的整体重构误差判定目标类别。采用MSTAR (Moving and Stationary Target Acquisition and Recognition)公共数据集对提出方法进行了性能测试。实验结果表明,该方法的识别性能显著优于现有的SAR目标识别方法。