The temperature dependent magnetization of the (Ce,Nd) 2(Fe,Si,Mn) 17 intermetallic compounds were measured and analyzed by molecular field theory (MFT). The relationship between T C and the intrasublattic...The temperature dependent magnetization of the (Ce,Nd) 2(Fe,Si,Mn) 17 intermetallic compounds were measured and analyzed by molecular field theory (MFT). The relationship between T C and the intrasublattice coupling interactions was discussed. The two sublattice MFT model can well describe the temperature dependence of the magnetization for all the compounds investigated. Ce ion in (Ce,Nd) 2Fe 17 compounds does not simply dilute the magnetic structure, but is likely present in a mixed valence state. The substitution of Si for Fe strongly raises T C and the mean Fe moment remains unchanged for Ce 2(Si,Fe) 17 compounds, and the 3d exchange coupling constant J FF increases linearly. Mn decreases T C of Nd 2(Mn, Fe) 17 compound by reducing J FF .展开更多
文摘The temperature dependent magnetization of the (Ce,Nd) 2(Fe,Si,Mn) 17 intermetallic compounds were measured and analyzed by molecular field theory (MFT). The relationship between T C and the intrasublattice coupling interactions was discussed. The two sublattice MFT model can well describe the temperature dependence of the magnetization for all the compounds investigated. Ce ion in (Ce,Nd) 2Fe 17 compounds does not simply dilute the magnetic structure, but is likely present in a mixed valence state. The substitution of Si for Fe strongly raises T C and the mean Fe moment remains unchanged for Ce 2(Si,Fe) 17 compounds, and the 3d exchange coupling constant J FF increases linearly. Mn decreases T C of Nd 2(Mn, Fe) 17 compound by reducing J FF .