期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进麻雀搜索算法优化LSTM的滚动轴承故障诊断 被引量:3
1
作者 周玉 房倩 +1 位作者 裴泽宣 白磊 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第2期289-298,共10页
为了对滚动轴承的工作状态及故障类别进行准确的诊断,本文采用长短时记忆(LSTM)神经网络作为分类器对滚动轴承数据集进行分类诊断。首先,从滚动轴承原始运行振动信号中提取时域和频域特征参数,组成具有高维特征参数的数据集;使用核主成... 为了对滚动轴承的工作状态及故障类别进行准确的诊断,本文采用长短时记忆(LSTM)神经网络作为分类器对滚动轴承数据集进行分类诊断。首先,从滚动轴承原始运行振动信号中提取时域和频域特征参数,组成具有高维特征参数的数据集;使用核主成分分析(KPCA)方法对高维特征集进行降维处理,选取重要性程度高的特征构成输入特征向量。然后,针对LSTM神经网络在滚动轴承故障诊断中存在的超参数难以确定的问题,提出一种基于自适应t分布策略的麻雀搜索算法优化LSTM神经网络的故障诊断方法(tSSA–LSTM)。最后,使用凯斯西储大学滚动轴承数据中心的数据进行故障诊断精度测试、泛化性能测试及噪声环境下故障诊断性能测试等多个仿真实验,并将本文提出的诊断模型与麻雀搜索算法优化长短时记忆神经网络(SSA–LSTM)、遗传算法优化长短时记忆神经网络(GA–LSTM)、粒子群算法优化长短时记忆神经网络(PSO–LSTM)及传统LSTM诊断模型进行对比。结果表明:tSSA可以更有效地对LSTM的隐含层神经元数量、周期次数、学习率等超参数进行合理优化;所提方法的平均诊断准确率达到98.86%,交叉验证平均诊断结果为98.57%;所提方法在噪声干扰下的故障诊断准确率也优于对比方法。因此,本文提出的tSSA–LSTM模型不仅可以更精准地诊断滚动轴承故障状态,而且具有更强的泛化能力及抗干扰能力,有效地提高了滚动轴承故障诊断的性能。 展开更多
关键词 麻雀搜索算法 故障诊断 长短时记忆神经网络 特征提取 滚动轴承
下载PDF
引入相量算子和流向算子的天鹰优化算法 被引量:1
2
作者 周玉 裴泽宣 +1 位作者 王培崇 陈博 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第2期304-316,共13页
针对天鹰优化算法搜索效率不足,容易陷入局部最优的缺点,提出多策略改进天鹰优化算法(MIAO).引入广义正态分布优化算法(GNDO),将该算法得出的结果与天鹰优化算法第1阶段得出的结果进行比较,筛选出这2种优化算法下的最优值.该操作扩大了... 针对天鹰优化算法搜索效率不足,容易陷入局部最优的缺点,提出多策略改进天鹰优化算法(MIAO).引入广义正态分布优化算法(GNDO),将该算法得出的结果与天鹰优化算法第1阶段得出的结果进行比较,筛选出这2种优化算法下的最优值.该操作扩大了搜索空间,提高了解的质量.引入相量算子,将第2阶段变为自适应的非参数优化,提高算法的高维优化能力.针对天鹰优化算法在迭代后期存在种群多样性降低、局部开发能力不足的问题,在天鹰算法的第3阶段引入流向算子,使信息可以在每个个体间相互传递,提高种群信息的利用率,增强天鹰优化算法的开发性能.通过对16个测试函数寻优对比分析以及Wilcoxon秩和检验可知,MIAO的寻优能力和收敛速度都有较大的提升.为了验证MIAO算法的实用性和可行性,采用所提算法求解减速器设计问题,通过实际工程优化问题的实验对比分析可知,MIAO算法在处理现实优化问题上具有一定的优越性. 展开更多
关键词 天鹰优化算法 广义正态分布优化算法 相量算子 流向算子 测试函数 Wilcoxon秩和检验
下载PDF
改进DPC聚类算法的离群点检测与解释方法
3
作者 周玉 夏浩 裴泽宣 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第8期68-85,共18页
为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方... 为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方法能够同时对数据点的全局和局部进行分析。首先,利用k近邻和核密度估计方法计算数据点的局部密度,代替传统DPC算法中根据截断距离计算的局部密度。其次,将数据点的k近邻距离之和作为全局异常值,并通过KDPC聚类算法计算簇密度以及数据点的局部异常值。最后,将数据点的全局与局部异常值进行乘积作为最终异常得分,选取异常得分最高的Top-n作为离群点,通过构建全局-局部异常值决策图对全局和局部离群点进行解释。利用人工数据集和UCI数据集进行实验并与10种常用离群点检测方法进行比较。结果表明,该方法对全局和局部离群点都有着较高的检测精度和检测性能,并且AUC方面受k值影响较小。同时,利用该方法对NBA球员数据进行分析讨论,进一步证明了该方法的实用性和有效性。 展开更多
关键词 离群点检测 聚类 密度峰值 K近邻 核密度估计
下载PDF
基于切线飞行的麻雀搜索算法 被引量:3
4
作者 周玉 房倩 +1 位作者 裴泽宣 陈博 《计算机应用研究》 CSCD 北大核心 2023年第1期141-146,共6页
为解决在临近全局最优条件下,原始麻雀搜索算法(sparrow search algorithm,SSA)存在种群多样性降低,局部开发能力薄弱导致不容易跳出局部最优点的问题,提出基于切线飞行的麻雀搜索算法(tangent flight sparrow search algorithm,tanSSA... 为解决在临近全局最优条件下,原始麻雀搜索算法(sparrow search algorithm,SSA)存在种群多样性降低,局部开发能力薄弱导致不容易跳出局部最优点的问题,提出基于切线飞行的麻雀搜索算法(tangent flight sparrow search algorithm,tanSSA)。首先,使用自适应t分布策略改进发现者位置更新公式,可以提高麻雀个体的寻优能力,同时防止算法早熟。然后,利用切线搜索算法中切线飞行策略所具有的可以增强算法探索搜索空间能力,且能使算法跳出局部最优解的优势,在原始麻雀搜索算法中使用切线飞行扰动策略对最优解进行扰动。这两种策略相结合,可以有效提升tanSSA算法的勘探与开发性能。最后,使用12个标准基准测试函数,结合Wilcoxon秩和检验来测试验证tanSSA算法的优化性能,并与原始SSA算法、鲸鱼优化算法、粒子群优化算法以及自适应t分布SSA算法进行比较。实验证明,基于切线飞行的麻雀搜索算法的寻优能力和收敛速度都有显著提升。 展开更多
关键词 麻雀搜索算法 自适应t分布策略 切线飞行策略 Wilcoxon秩和检验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部