为获得与单口径望远镜相当的空间分辨率,使成像系统成像质量达到或接近衍射极限,拼接主镜式望远镜的分块子镜应确保实现共相位拼接,本文针对拼接主镜式望远镜高精度平移(piston)误差检测问题,提出了一种基于卷积神经网络的高精度平移误...为获得与单口径望远镜相当的空间分辨率,使成像系统成像质量达到或接近衍射极限,拼接主镜式望远镜的分块子镜应确保实现共相位拼接,本文针对拼接主镜式望远镜高精度平移(piston)误差检测问题,提出了一种基于卷积神经网络的高精度平移误差检测方法.通过在成像系统的出瞳面上设置具有离散孔的光阑,构建了对平移误差极为敏感的点扩散函数图像数据集,根据此数据集的特点搭建了具有高性能的网络模型,并测试得到网络的最佳检测范围.仿真结果表明,在略小于一个波长的捕获范围内,单个网络能够准确地输出一个或多个分块子镜的平移误差;应用于六子镜成像系统时,平移误差检测精度达0.0013λRMS(root mean square),并且方法对残余倾斜(tip-tilt)误差、波前像差、CCD噪声、光源带宽具有良好的鲁棒性.该方法简单快速,可广泛应用于分块镜系统的平移误差检测.展开更多
文摘为获得与单口径望远镜相当的空间分辨率,使成像系统成像质量达到或接近衍射极限,拼接主镜式望远镜的分块子镜应确保实现共相位拼接,本文针对拼接主镜式望远镜高精度平移(piston)误差检测问题,提出了一种基于卷积神经网络的高精度平移误差检测方法.通过在成像系统的出瞳面上设置具有离散孔的光阑,构建了对平移误差极为敏感的点扩散函数图像数据集,根据此数据集的特点搭建了具有高性能的网络模型,并测试得到网络的最佳检测范围.仿真结果表明,在略小于一个波长的捕获范围内,单个网络能够准确地输出一个或多个分块子镜的平移误差;应用于六子镜成像系统时,平移误差检测精度达0.0013λRMS(root mean square),并且方法对残余倾斜(tip-tilt)误差、波前像差、CCD噪声、光源带宽具有良好的鲁棒性.该方法简单快速,可广泛应用于分块镜系统的平移误差检测.