In recent years, konjac glucomannan(KGM) has gained considerable attention due to its non-toxic, harmless, excellent biocompatibility, biodegradability, good water imbibition as well as gel properties. KGM and its d...In recent years, konjac glucomannan(KGM) has gained considerable attention due to its non-toxic, harmless, excellent biocompatibility, biodegradability, good water imbibition as well as gel properties. KGM and its derivatives have been widely used in food science, chemical, pharmaceutical, and material areas. In this review, we will focus on the most recent advances in the structures and properties of KGM. We will first describe the influence of different modification methods on the structures and properties of KGM. Then we will review the results obtained with KGM as functional materials in different studies in the fields of hydrogels, aerogels, nanoparticles, membrane materials, microspheres and microcapsule to provide theoretical basis for the further study.展开更多
In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of method...In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.展开更多
The dynamic changes of the complex network and the material form and function were actuated by the molecular chains. The interaction behavior between molecular chains was difficult to illuminate because the dynamic ch...The dynamic changes of the complex network and the material form and function were actuated by the molecular chains. The interaction behavior between molecular chains was difficult to illuminate because the dynamic changes of macromolecules were observed difficultly by normal spectrum method and the methods to test and evaluate the complex network evolution prediction and intervention are rare. The mathematic model of domino offect of molecular chains was established based on the topological structure of molecular chain aggregation of Konjac glucomannan, and the molecular entanglement mechanism of Konjac glucamannan blends was studied through molecular simulation and knot theory analysis combined with experimental verification. The results suggested that two network models (topological entanglement and solid knot) of Konjac glucomannon blends were formed through hydrogen bond nodes. The topological entanglement was strengthened with the increase of concentration and the form of molecular chains was Gaussian chain which could not allow traverse moving owing to the intermolecular cross and entanglement and the shield of intramolecular interaction. Besides, the structures of Konjac glucomannon blends became more stable due to the solid knot. Both of them were verified by the experimental results. This experimental method simplifies the microscopic description of Konjac glucomannon, and there is important guiding significance of the experimental results for the prediction and control ofpolysaccharides' structure and function.展开更多
为了研究电场对魔芋葡甘聚糖与卡拉胶相互作用机理的影响,本研究采用5 k V直流高压(氧负离子)处理魔芋葡甘聚糖与卡拉胶粉末,将粉末配制样品进行试验;结果表明:经电场处理9 min的KGM与卡拉胶复合胶的弹性模量G'始终明显大于黏性模量...为了研究电场对魔芋葡甘聚糖与卡拉胶相互作用机理的影响,本研究采用5 k V直流高压(氧负离子)处理魔芋葡甘聚糖与卡拉胶粉末,将粉末配制样品进行试验;结果表明:经电场处理9 min的KGM与卡拉胶复合胶的弹性模量G'始终明显大于黏性模量G",此时的凝胶网络富有弹性,分子链缠结贯穿效应明显。KGM与卡拉胶复合胶在频率扫描范围内,弹性模量G'明显大于黏性模量G",表明此时已经具有一定强度的凝胶网络结构;当多糖浓度为1%,魔芋葡甘聚糖与卡拉胶的共混比例为1:4时,凝胶强度达到最大值;电场处理时间为6 min时,凝胶强度最大;在75℃下加热30 min的凝胶强度最大;进行傅里叶红外光谱扫描,从红外吸收谱图中,吸收峰仅有强度的变化,未检测到新的吸收峰,说明电场处理未能显著改变其化学结构,引起性质的显著变化。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.31271837 and 31471704)
文摘In recent years, konjac glucomannan(KGM) has gained considerable attention due to its non-toxic, harmless, excellent biocompatibility, biodegradability, good water imbibition as well as gel properties. KGM and its derivatives have been widely used in food science, chemical, pharmaceutical, and material areas. In this review, we will focus on the most recent advances in the structures and properties of KGM. We will first describe the influence of different modification methods on the structures and properties of KGM. Then we will review the results obtained with KGM as functional materials in different studies in the fields of hydrogels, aerogels, nanoparticles, membrane materials, microspheres and microcapsule to provide theoretical basis for the further study.
基金supported by the National Natural Science Foundation of China(31271837 and 31471704)the major project of Fujian Industry-Academy-Research Cooperation(2013N5003)+1 种基金the Natural Science Foundation(2011J0101)of Fujian Province,the Science and Technology Program under Fujian Provincial Department of Education(JA13439 and JA13440)the Science and Technology Program under Fujian Provincial Department of Forestry(20135)
文摘In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.
基金supported by the National Natural Science Foundation of China(31271837)Specialized Research Fund for the Doctoral Program of Higher Education jointly funded by Ministry of Education(20113515110010)+2 种基金Special Research Funds from Ministry of Science and Technology(2012GA7200022)Major projects of industries,universities and research in Fujian Province(2013N5003)Natural Science Foundation of Fujian Province(2011J0101)
文摘The dynamic changes of the complex network and the material form and function were actuated by the molecular chains. The interaction behavior between molecular chains was difficult to illuminate because the dynamic changes of macromolecules were observed difficultly by normal spectrum method and the methods to test and evaluate the complex network evolution prediction and intervention are rare. The mathematic model of domino offect of molecular chains was established based on the topological structure of molecular chain aggregation of Konjac glucomannan, and the molecular entanglement mechanism of Konjac glucamannan blends was studied through molecular simulation and knot theory analysis combined with experimental verification. The results suggested that two network models (topological entanglement and solid knot) of Konjac glucomannon blends were formed through hydrogen bond nodes. The topological entanglement was strengthened with the increase of concentration and the form of molecular chains was Gaussian chain which could not allow traverse moving owing to the intermolecular cross and entanglement and the shield of intramolecular interaction. Besides, the structures of Konjac glucomannon blends became more stable due to the solid knot. Both of them were verified by the experimental results. This experimental method simplifies the microscopic description of Konjac glucomannon, and there is important guiding significance of the experimental results for the prediction and control ofpolysaccharides' structure and function.