期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于半监督学习的网络异常检测研究综述 被引量:1
1
作者 张浩 谢大智 +1 位作者 胡云晟 叶骏威 《信息网络安全》 CSCD 北大核心 2024年第4期491-508,共18页
网络流量数据的获取较为容易,而对流量数据进行标记相对困难。半监督学习利用少量有标签数据和大量无标签数据进行训练,减少了对有标签数据的需求,能较好适应海量网络流量数据下的异常检测。文章对近年来的半监督网络异常检测领域的论... 网络流量数据的获取较为容易,而对流量数据进行标记相对困难。半监督学习利用少量有标签数据和大量无标签数据进行训练,减少了对有标签数据的需求,能较好适应海量网络流量数据下的异常检测。文章对近年来的半监督网络异常检测领域的论文进行深入调研。首先,介绍了一些基本概念,并深入剖析了网络异常检测中使用半监督学习策略的必要性;然后,从半监督机器学习、半监督深度学习和半监督学习结合其他范式三个方面,分析和比较了半监督网络异常检测领域近年来的论文,并进行归纳和总结;最后,对当前半监督网络异常检测领域进行了现状分析和未来展望。 展开更多
关键词 半监督学习 标签稀缺 入侵检测 异常检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部