期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
类不平衡数据的EM聚类过采样算法 被引量:7
1
作者 谢子鹏 包崇明 +2 位作者 周丽华 王崇云 孔兵 《计算机科学与探索》 CSCD 北大核心 2023年第1期228-237,共10页
针对分类任务中的不平衡数据集造成的分类性能低下的问题,提出了类不平衡数据的EM聚类过采样算法,通过过采样提高少数类样本数量,从根本上解决数据不平衡问题。首先,算法采用聚类技术,通过欧式距离衡量样本间的相似度,选取每个聚类簇的... 针对分类任务中的不平衡数据集造成的分类性能低下的问题,提出了类不平衡数据的EM聚类过采样算法,通过过采样提高少数类样本数量,从根本上解决数据不平衡问题。首先,算法采用聚类技术,通过欧式距离衡量样本间的相似度,选取每个聚类簇的中心点作为过采样点,一定程度解决了样本的重要程度不够的问题;其次,通过直接在少数类样本空间上进行采样,可较好解决SMOTE、Cluster-SMOTE等方法对聚类空间没有针对性的问题;同时,通过对少数类样本数量的30%进行过采样,有效解决基于Cluster聚类的欠采样盲目追求两类样本数量平衡和SMOTE等算法没有明确采样率的问题。在公开的24个类不平衡数据集上进行了实验,验证了方法的有效性。 展开更多
关键词 分类任务 不平衡数据集 类不平衡 过采样 聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部