The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of qu...The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.展开更多
The flotation mechanism of aluminosilicate minerals using alkylguanidine collectors was studied through flotation experiments, Zeta potential measurements and FT-IR spectrum analysis. It is shown that kaolinite, illit...The flotation mechanism of aluminosilicate minerals using alkylguanidine collectors was studied through flotation experiments, Zeta potential measurements and FT-IR spectrum analysis. It is shown that kaolinite, illite and pyrophyllite all exhibit good floatability with alkylguanidines as collectors at pH 4-12. The flotation recoveries rise with the increase of the carbon chain length. Isoelectric point(IEP) is determined to be 3.5, 3.0 and 2.3 for kaolinite, illite and pyrophyllite, respectively. However, it is anomalous that the presence of cationic collectors has less influence on the negatively charged mineral surfaces. It is explained by the special structure of guanidine which is one of the strongest bases, having two —NH2 groups. One of them maybe interacts with minerals by electrostatic forces, and the other maybe forms hydrogen bonding with OH- ions on the aluminosilicate surfaces or in the aqueous solution, increasing the density of negative charge on the aluminosilicate surface and leading unpronounced positive charge to increase on the aluminosilicate. By combining the flotation tests, Zeta potential and FTIR measurements above, the interaction mechanism can be concluded. The simultaneous presence of cationic and neutral amine groups makes it possible for SAG cation to bind on three aluminosilicate minerals by both electrostatic attraction and hydrogen bonding. While in acidic medium, the interaction of the alkylguanidines on the aluminosilicate surfaces is mainly by means of electrostatic force and hydrogen bond; in the alkaline medium, it is by the way of electrostatic effect and hydrogen bond.展开更多
基金Project(2005CB623701) supported by the National Key Fundamental Research and Development Program of China
文摘The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.
基金Project(2005CB623701) supported by the National Basic Research Program of ChinaProject(50874118) supported by the National Natural Science Foundation of ChinaProject(2007B52) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘The flotation mechanism of aluminosilicate minerals using alkylguanidine collectors was studied through flotation experiments, Zeta potential measurements and FT-IR spectrum analysis. It is shown that kaolinite, illite and pyrophyllite all exhibit good floatability with alkylguanidines as collectors at pH 4-12. The flotation recoveries rise with the increase of the carbon chain length. Isoelectric point(IEP) is determined to be 3.5, 3.0 and 2.3 for kaolinite, illite and pyrophyllite, respectively. However, it is anomalous that the presence of cationic collectors has less influence on the negatively charged mineral surfaces. It is explained by the special structure of guanidine which is one of the strongest bases, having two —NH2 groups. One of them maybe interacts with minerals by electrostatic forces, and the other maybe forms hydrogen bonding with OH- ions on the aluminosilicate surfaces or in the aqueous solution, increasing the density of negative charge on the aluminosilicate surface and leading unpronounced positive charge to increase on the aluminosilicate. By combining the flotation tests, Zeta potential and FTIR measurements above, the interaction mechanism can be concluded. The simultaneous presence of cationic and neutral amine groups makes it possible for SAG cation to bind on three aluminosilicate minerals by both electrostatic attraction and hydrogen bonding. While in acidic medium, the interaction of the alkylguanidines on the aluminosilicate surfaces is mainly by means of electrostatic force and hydrogen bond; in the alkaline medium, it is by the way of electrostatic effect and hydrogen bond.