Following the reconstruction of the TEXT tokamak at Huazhong University of Science and Technology in China, renamed as J-TEXT, a plethora of experimental and theoretical investigations has been conducted to elucidate ...Following the reconstruction of the TEXT tokamak at Huazhong University of Science and Technology in China, renamed as J-TEXT, a plethora of experimental and theoretical investigations has been conducted to elucidate the intricacies of turbulent transport within the tokamak configuration. These endeavors encompass not only the J-TEXT device's experimental advancements but also delve into critical issues pertinent to the optimization of future fusion devices and reactors. The research includes topics on the suppression of turbulence, flow drive and damping, density limit, non-local transport, intrinsic toroidal flow, turbulence and flow with magnetic islands, turbulent transport in the stochastic layer, and turbulence and zonal flow with energetic particles or helium ash. Several important achievements have been made in the last few years, which will be further elaborated upon in this comprehensive review.展开更多
Enhancements of edge zonal flows,radial electric fields,and turbulence are observed in electron cyclotron resonance heating-heated plasmas(Zhao et al 2013 Nucl.Fusion 53083011).In this paper,the effects of sawtooth he...Enhancements of edge zonal flows,radial electric fields,and turbulence are observed in electron cyclotron resonance heating-heated plasmas(Zhao et al 2013 Nucl.Fusion 53083011).In this paper,the effects of sawtooth heat pulses on flows and turbulence are presented.These experiments are performed using multiple Langmuir probe arrays in the edge plasmas of the HL-2A tokamak.The edge zonal flows,radial electric fields,and turbulence are all enhanced by sawteeth.Propagation of the zonal flow and turbulence intensities is also observed.The delay time of the maximal intensity of the electric fields,zonal flows,and turbulence with respect to the sawtooth crashes is estimated as~1 ms and comparable to that of the sawtooth-triggered intermediate phases.Not only the zonal flows but also the radial electric fields lag behind the turbulence.Furthermore,the intensities of both the zonal flows and electric fields nearly linearly increase/decrease with the increase/decrease of the turbulence intensity.A double-source predator-prey model analysis suggests that a relatively strong turbulence source may contribute to the dominant zonal flow formation during sawtooth cycles.展开更多
A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW)...A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW), lower noise room temperature detector (noise tempera- ture below 6000 K) with good spatial resolution of 7 cm. Various parameters are optimized for maximum laser output power. Zero crossings of the signals are counted with field programmable gate array (FPGA) digital circuitry yielding the resolution of 1/1000 fringe. The newly measured results including density fluctuation are also presented.展开更多
The fully developed turbulence can be regarded as a nonlinear system,with wave coupling inside,which causes the nonlinear energy to transfer,and drives the turbulence to develop further or be suppressed.Spectral analy...The fully developed turbulence can be regarded as a nonlinear system,with wave coupling inside,which causes the nonlinear energy to transfer,and drives the turbulence to develop further or be suppressed.Spectral analysis is one of the most effective methods to study turbulence system.In order to apply it to the study of the nonlinear wave coupling process of edge plasma turbulence,an efficient algorithm based on spectral analysis technology is proposed to solve the nonlinear wave coupling equation.The algorithm is based on a mandatory temporal static condition with the nonideal spectra separated from the ideal spectra.The realization idea and programing flow are given.According to the characteristics of plasma turbulence,the simulation data are constructed and used to verify the algorithm and its implementation program.The simulation results and experimental results show the accuracy of the algorithm and the corresponding program,which can play a great role in the studying the energy transfer in edge plasma turbulences.As an application,the energy cascade analysis of typical edge plasma turbulence is carried out by using the results of a case calculation.Consequently,a physical picture of the energy transfer in a kind of fully developed turbulence is constructed,which confirms that the energy transfer in this turbulent system develops from lower-frequency region to higher-frequency region and from linear growing wave to damping wave.展开更多
The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at...The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as 10–100 ms-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.展开更多
Electron temperature, density, plasma potential and their fluctuation profiles at edge plasmas are measured simultaneously with a reciprocating probe system in HL-2A. The analysis results of four-tip data indicate tha...Electron temperature, density, plasma potential and their fluctuation profiles at edge plasmas are measured simultaneously with a reciprocating probe system in HL-2A. The analysis results of four-tip data indicate that the temperature fluctuation has relative amplitude of 10-15%, gives more contribution to particle flux in lower (0- 25 kHz) and higher frequency (50-250 kHz) ranges. The coherence between temperature fluctuations and density or potential fluctuations implies that their coupling will impact anomalous transport. The measured diffusion coefficient is about three times of the Bohm diffusion coefficient when considering the temperature fluctuation. The particle flux with temperature fluctuation is discussed in HL-2A for the first time.展开更多
基金supported by the National Key R&D Program of China (Nos. 2022YFE03100004, 2017YFE0302000, and 2017YFE0301100)National Natural Science Foundation of China (Nos. 12275097, 12275096, 11875292, 11675059, 11905079, 11305071, and 51821005)+5 种基金the Ministry of Science and Technology of China (No. 2013GB112002)the Project of Science and Technology Department of Sichuan Province (No. 2022NSFSC1791)the Natural Science Foundation of Anhui Province (No. 2208085J39)the Fundamental Research Funds for the Central Universities, HUST: (Nos. 2019kfy XMBZ034 and 2021XXJS007)the Initiative Postdocs Supporting Program of China (No. BX20180105)the US Department of Energy, Office of Science, Office of Fusion Energy Sciences (Nos. DEFG02-04ER54738 and DE-SC-0020287)。
文摘Following the reconstruction of the TEXT tokamak at Huazhong University of Science and Technology in China, renamed as J-TEXT, a plethora of experimental and theoretical investigations has been conducted to elucidate the intricacies of turbulent transport within the tokamak configuration. These endeavors encompass not only the J-TEXT device's experimental advancements but also delve into critical issues pertinent to the optimization of future fusion devices and reactors. The research includes topics on the suppression of turbulence, flow drive and damping, density limit, non-local transport, intrinsic toroidal flow, turbulence and flow with magnetic islands, turbulent transport in the stochastic layer, and turbulence and zonal flow with energetic particles or helium ash. Several important achievements have been made in the last few years, which will be further elaborated upon in this comprehensive review.
基金National Natural Science Foundation of China(Nos.12075057,11775069,11320101005,and 11875020)National Magnetic Confinement Fusion Science Program of China(No.2017YFE0301201)+3 种基金East China University of Technology,Doctoral Foundation(Nos.DHBK 2017134 and DHBK 2018059)Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science(Nos.15H02155,15H02335,21K03513)Landmark Achievements in Nuclear Science and Technology(No.xxkjs2018011)Natural Science Foundation of Jiangxi Province(Nos.20202ACBL201002 and 0192ACB80006)。
文摘Enhancements of edge zonal flows,radial electric fields,and turbulence are observed in electron cyclotron resonance heating-heated plasmas(Zhao et al 2013 Nucl.Fusion 53083011).In this paper,the effects of sawtooth heat pulses on flows and turbulence are presented.These experiments are performed using multiple Langmuir probe arrays in the edge plasmas of the HL-2A tokamak.The edge zonal flows,radial electric fields,and turbulence are all enhanced by sawteeth.Propagation of the zonal flow and turbulence intensities is also observed.The delay time of the maximal intensity of the electric fields,zonal flows,and turbulence with respect to the sawtooth crashes is estimated as~1 ms and comparable to that of the sawtooth-triggered intermediate phases.Not only the zonal flows but also the radial electric fields lag behind the turbulence.Furthermore,the intensities of both the zonal flows and electric fields nearly linearly increase/decrease with the increase/decrease of the turbulence intensity.A double-source predator-prey model analysis suggests that a relatively strong turbulence source may contribute to the dominant zonal flow formation during sawtooth cycles.
基金National Natural Science Foundation of China (Nos.10575030,10675043)the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW), lower noise room temperature detector (noise tempera- ture below 6000 K) with good spatial resolution of 7 cm. Various parameters are optimized for maximum laser output power. Zero crossings of the signals are counted with field programmable gate array (FPGA) digital circuitry yielding the resolution of 1/1000 fringe. The newly measured results including density fluctuation are also presented.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFE0301200)the National Natural Science Foundation of China(Grant Nos.12075077 and 12175055)the Science and Technology Project of Sichuan Pprovince,China(Grant No.2020YJ0464)。
文摘The fully developed turbulence can be regarded as a nonlinear system,with wave coupling inside,which causes the nonlinear energy to transfer,and drives the turbulence to develop further or be suppressed.Spectral analysis is one of the most effective methods to study turbulence system.In order to apply it to the study of the nonlinear wave coupling process of edge plasma turbulence,an efficient algorithm based on spectral analysis technology is proposed to solve the nonlinear wave coupling equation.The algorithm is based on a mandatory temporal static condition with the nonideal spectra separated from the ideal spectra.The realization idea and programing flow are given.According to the characteristics of plasma turbulence,the simulation data are constructed and used to verify the algorithm and its implementation program.The simulation results and experimental results show the accuracy of the algorithm and the corresponding program,which can play a great role in the studying the energy transfer in edge plasma turbulences.As an application,the energy cascade analysis of typical edge plasma turbulence is carried out by using the results of a case calculation.Consequently,a physical picture of the energy transfer in a kind of fully developed turbulence is constructed,which confirms that the energy transfer in this turbulent system develops from lower-frequency region to higher-frequency region and from linear growing wave to damping wave.
基金supported by National Natural Science Foundation of China(Nos.12075057,11775069,11320101005,51821005 and 11875020)Jiangxi Provincial Natural Science Foundation(No.20202ACBL201002)+1 种基金Doctoral Foundation(Nos.DHBK2017134 and DHBK 2018059)Grant-in-Aid for Scientific Research of JSPS(Nos.15H02155,15H02335,16H02442)。
文摘The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as 10–100 ms-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.
基金Supported by the National Natural Science Foundation of China under Grant No 10675041. One of the authors (Cheng J.) would like to thank LIU Adi for the help on transacting the data and LAN Tao for useful discussion. We acknowledge the HL-2A Team for good operation.
文摘Electron temperature, density, plasma potential and their fluctuation profiles at edge plasmas are measured simultaneously with a reciprocating probe system in HL-2A. The analysis results of four-tip data indicate that the temperature fluctuation has relative amplitude of 10-15%, gives more contribution to particle flux in lower (0- 25 kHz) and higher frequency (50-250 kHz) ranges. The coherence between temperature fluctuations and density or potential fluctuations implies that their coupling will impact anomalous transport. The measured diffusion coefficient is about three times of the Bohm diffusion coefficient when considering the temperature fluctuation. The particle flux with temperature fluctuation is discussed in HL-2A for the first time.