风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空...风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空间模型,然后提出综合考虑稳态运行约束条件和小信号稳定性约束条件的系统功率传输能力计算方法及流程,掌握不同功率水平下系统稳定运行区域及边界的变化特征,最终得到不同水电出力下的直流外送系统功率传输范围、特定传输功率下所允许的水电出力最小值、风光配比与小信号稳定性的定量关系。通过该方法定量评估风光水配比不同时直流外送系统的功率传输能力,从而优化选取风光水配比。结果表明,水电出力较小时,系统传输功率上限受小信号稳定性制约,下限受电压偏移约束制约;水电出力较大时,系统传输功率上限受LCC-HVDC安全运行约束制约,下限受逆变侧电压偏移、系统潮流约束制约;在功率运行点不变时,风光配比平衡工况系统更加稳定。最后,通过PSCAD/EMTDC下的电磁暂态仿真,验证上述功率传输能力理论计算的正确性。展开更多
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through,LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重...提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through,LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。展开更多
文摘风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空间模型,然后提出综合考虑稳态运行约束条件和小信号稳定性约束条件的系统功率传输能力计算方法及流程,掌握不同功率水平下系统稳定运行区域及边界的变化特征,最终得到不同水电出力下的直流外送系统功率传输范围、特定传输功率下所允许的水电出力最小值、风光配比与小信号稳定性的定量关系。通过该方法定量评估风光水配比不同时直流外送系统的功率传输能力,从而优化选取风光水配比。结果表明,水电出力较小时,系统传输功率上限受小信号稳定性制约,下限受电压偏移约束制约;水电出力较大时,系统传输功率上限受LCC-HVDC安全运行约束制约,下限受逆变侧电压偏移、系统潮流约束制约;在功率运行点不变时,风光配比平衡工况系统更加稳定。最后,通过PSCAD/EMTDC下的电磁暂态仿真,验证上述功率传输能力理论计算的正确性。
文摘提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through,LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。