针对传统滤波方法在解决移动机器人同时定位与地图构建(SLAM)中存在的累积误差问题,将图优化方法应用于前端和后端优化中,以提高移动机器人位姿估计和建图的准确性。运用ORB算法进行图像的特征提取与匹配,将图优化的方法应用到PnP问题...针对传统滤波方法在解决移动机器人同时定位与地图构建(SLAM)中存在的累积误差问题,将图优化方法应用于前端和后端优化中,以提高移动机器人位姿估计和建图的准确性。运用ORB算法进行图像的特征提取与匹配,将图优化的方法应用到PnP问题的求解中,实现了机器人位姿的准确估计。基于词典(Bag of words)的闭环检测算法来进行闭环检测,得到存在的大回环,同时利用相邻几帧的匹配关系实时检测邻近几帧之间可能存在的局部回环。用图优化的方法对这些回环进行优化,得到准确的运动轨迹和点云地图。实验结果表明:基于前后端图优化的RGB-D三维SLAM算法,在室内环境下具有良好的精度和实时性。展开更多
文摘针对传统滤波方法在解决移动机器人同时定位与地图构建(SLAM)中存在的累积误差问题,将图优化方法应用于前端和后端优化中,以提高移动机器人位姿估计和建图的准确性。运用ORB算法进行图像的特征提取与匹配,将图优化的方法应用到PnP问题的求解中,实现了机器人位姿的准确估计。基于词典(Bag of words)的闭环检测算法来进行闭环检测,得到存在的大回环,同时利用相邻几帧的匹配关系实时检测邻近几帧之间可能存在的局部回环。用图优化的方法对这些回环进行优化,得到准确的运动轨迹和点云地图。实验结果表明:基于前后端图优化的RGB-D三维SLAM算法,在室内环境下具有良好的精度和实时性。