针对强噪声背景下轴承故障特征提取困难的问题,提出一种基于奇异值分解和参数优化变分模态分解联合降噪的轴承故障特征提取方法(SSVMD):首先,对原始信号进行奇异值分解(Singular Value Decomposition,SVD)处理,运用奇异值差分谱法选取...针对强噪声背景下轴承故障特征提取困难的问题,提出一种基于奇异值分解和参数优化变分模态分解联合降噪的轴承故障特征提取方法(SSVMD):首先,对原始信号进行奇异值分解(Singular Value Decomposition,SVD)处理,运用奇异值差分谱法选取有效奇异值并将原始信号重构得到初步降噪信号;其次,为防止故障信息丢失,将残余信号进行麻雀算法(Sparrow Search Algorithm,SSA)优化的变分模态分解(Variational Mode Decomposition,VMD)算法处理,得到最佳的模态个数K和惩罚参数α,选取峭度值最大、包络熵最小的IMF分量与初步降噪信号叠加得到最终降噪信号,并对信号进行包络分析;最后,通过仿真和试验数据分析得出,该方法能在信噪比很低的情况下降低噪声含量并提取轴承故障特征,为设备的状态监测和故障诊断提供理论依据。展开更多