Miniaturization of efficient thermoelectric(TE)devices has long been hindered by the weak mechanical strength and insufficient heat-to-electricity conversion efficiency of zone-melted(ZM)ingots.Here,we successfully pr...Miniaturization of efficient thermoelectric(TE)devices has long been hindered by the weak mechanical strength and insufficient heat-to-electricity conversion efficiency of zone-melted(ZM)ingots.Here,we successfully prepared a robust high-performance p-type Bi_(0.4)Sb_(1.6)Te_(3.72)bulk alloy by combining an ultrafast thermal explosion reaction with the spark plasma sintering(TER-SPS)process.It is observed that the introduced excess Te not only enhances the(00l)-oriented texture to ensure an outstanding power factor(PF)of 5 mW m^(−1)K^(−2),but also induces extremely high-density line defects of up to 10^(11)–10^(12)cm^(−2).Benefiting from such heavily dense line defects,the enhancement of the electronic thermal conductance from the increased electron mobility is fully compensated by the stronger phonon scattering,leading to an evident net reduction in total thermal conductivity.As a result,a superior ZT value of~1.4 at 350 K is achieved,which is 40%higher than that of commercial ZM ingots.Moreover,owing to the strengthening of grain refinement and highdensity line defects,the mechanical compressive stress reaches up to 94 MPa,which is 154%more than that of commercial single crystals.This research presents an effective strategy for the collaborative optimization of the texture,TE performance,and mechanical strength of Bi2Te3-based materials.As such,the present study contributes significantly to the future commercial development of miniature TE devices.展开更多
基金financially supported by the National Key Research and Development Program of China (2018YFB0703600)the National Natural Science Foundation of China (51772232)+1 种基金the 111 Project of China (B07040)Wuhan Frontier Project on Applied Research Foundation (2019010701011405)
文摘Miniaturization of efficient thermoelectric(TE)devices has long been hindered by the weak mechanical strength and insufficient heat-to-electricity conversion efficiency of zone-melted(ZM)ingots.Here,we successfully prepared a robust high-performance p-type Bi_(0.4)Sb_(1.6)Te_(3.72)bulk alloy by combining an ultrafast thermal explosion reaction with the spark plasma sintering(TER-SPS)process.It is observed that the introduced excess Te not only enhances the(00l)-oriented texture to ensure an outstanding power factor(PF)of 5 mW m^(−1)K^(−2),but also induces extremely high-density line defects of up to 10^(11)–10^(12)cm^(−2).Benefiting from such heavily dense line defects,the enhancement of the electronic thermal conductance from the increased electron mobility is fully compensated by the stronger phonon scattering,leading to an evident net reduction in total thermal conductivity.As a result,a superior ZT value of~1.4 at 350 K is achieved,which is 40%higher than that of commercial ZM ingots.Moreover,owing to the strengthening of grain refinement and highdensity line defects,the mechanical compressive stress reaches up to 94 MPa,which is 154%more than that of commercial single crystals.This research presents an effective strategy for the collaborative optimization of the texture,TE performance,and mechanical strength of Bi2Te3-based materials.As such,the present study contributes significantly to the future commercial development of miniature TE devices.