使用无人机对场景区域中的人、车、物、事等小目标进行实时有效监测有利于维护公共安全。针对无人机视角下小目标存在的目标遮挡、重叠、复杂环境干扰等问题,提出一种无人机视角下的小目标检测算法,该算法使用You Only Look Once X(YOL...使用无人机对场景区域中的人、车、物、事等小目标进行实时有效监测有利于维护公共安全。针对无人机视角下小目标存在的目标遮挡、重叠、复杂环境干扰等问题,提出一种无人机视角下的小目标检测算法,该算法使用You Only Look Once X(YOLOX)网络作为基线系统,首先在Neck网络部分增大输出特征图减小感受野提高网络的细节表现能力,删除小尺寸特征图的检测头提高小目标的检出率;其次使用Anchor Free的关联机制,降低真值标签中噪声的影响并同时减少参数设置加快网络运行;最后提出一种小目标真实占比系数来计算小目标的位置损失,该系数增大对小目标误判的惩罚使网络对小目标更加敏感。使用该算法在VisDrone2021数据集上进行实验,mAP值较基线系统提高了4.56%,参数量减少29.4%,运算量减少32.5%,检测速度提升19.7%,较其他主流算法也具有优势。展开更多
文摘使用无人机对场景区域中的人、车、物、事等小目标进行实时有效监测有利于维护公共安全。针对无人机视角下小目标存在的目标遮挡、重叠、复杂环境干扰等问题,提出一种无人机视角下的小目标检测算法,该算法使用You Only Look Once X(YOLOX)网络作为基线系统,首先在Neck网络部分增大输出特征图减小感受野提高网络的细节表现能力,删除小尺寸特征图的检测头提高小目标的检出率;其次使用Anchor Free的关联机制,降低真值标签中噪声的影响并同时减少参数设置加快网络运行;最后提出一种小目标真实占比系数来计算小目标的位置损失,该系数增大对小目标误判的惩罚使网络对小目标更加敏感。使用该算法在VisDrone2021数据集上进行实验,mAP值较基线系统提高了4.56%,参数量减少29.4%,运算量减少32.5%,检测速度提升19.7%,较其他主流算法也具有优势。