茶多酚作为茶叶品质检测的重要指标之一,利用近红外光谱分析技术对茶多酚含量进行快速检测具有重要意义。本文以144个红茶样品作为研究对象,采取近红外光谱法结合偏最小二乘法(Partial Least Squares,PLS),分别建立粉末状茶叶样品和完...茶多酚作为茶叶品质检测的重要指标之一,利用近红外光谱分析技术对茶多酚含量进行快速检测具有重要意义。本文以144个红茶样品作为研究对象,采取近红外光谱法结合偏最小二乘法(Partial Least Squares,PLS),分别建立粉末状茶叶样品和完整茶叶样品的茶多酚含量的近红外快速分析模型。结果表明,选用SNV+一阶导数+Savitzky-Golay平滑的预处理方法结合PLS建立的预测模型效果最佳,粉末状茶叶样品所建立模型训练集相关系数(Correlation Coefficient,r)为0.9990,训练集均方根误差(Root Mean Square Error of Calibration,RMSEC)为0.165%,预测集的r为0.9243,预测集均方根误差(Root Mean Square Error of Prediction,RMSEP)为0.972%;完整茶叶样品训练集r为0.9967,RMSEC为0.310%,预测集的r为0.9541,RMSEP为0.870%。结果表明,完整茶叶样品所建立的PLS定量分析模型要优于粉末状茶叶所建立的模型。因此,利用近红外光谱技术可实现对红茶中茶多酚含量的快速、无损检测。展开更多
文摘目的 利用中红外光谱技术实现对煎炸油极性组分的快速检测。方法 根据光谱-理化值共生距离分类法对煎炸油中红外光谱数据进行样本划分,从而得到校正集和预测集。采用卷积(Savitzy-Golay,S-G)平滑+一阶导数预处理手段,利用竞争自适应重加权算法(competitive adaptive reweighted sampling, CARS)进行特征提取,建立煎炸油极性组分含量的偏最小二乘回归(partial least squares regression, PLSR)预测模型,并利用BP神经网络算法对模型进行优化。结果 BP神经网络算法建立的模型校正集决定系数为0.9032,校正集均方根误差(root means quare error of calibration,RMSEC)为0.1264,预测集决定系数为0.8569,预测集均方根误差(root mean square error of prediction, RMSEP)为0.0625。经BP神经网络算法优化后,均方根误差明显减小,提高了预测模型的准确性。结论 结合BP神经网络算法的中红外光谱技术是一种检测煎炸油极性组分的有效方法,为食用油品质的快速检测提供理论指导和技术支撑。
文摘茶多酚作为茶叶品质检测的重要指标之一,利用近红外光谱分析技术对茶多酚含量进行快速检测具有重要意义。本文以144个红茶样品作为研究对象,采取近红外光谱法结合偏最小二乘法(Partial Least Squares,PLS),分别建立粉末状茶叶样品和完整茶叶样品的茶多酚含量的近红外快速分析模型。结果表明,选用SNV+一阶导数+Savitzky-Golay平滑的预处理方法结合PLS建立的预测模型效果最佳,粉末状茶叶样品所建立模型训练集相关系数(Correlation Coefficient,r)为0.9990,训练集均方根误差(Root Mean Square Error of Calibration,RMSEC)为0.165%,预测集的r为0.9243,预测集均方根误差(Root Mean Square Error of Prediction,RMSEP)为0.972%;完整茶叶样品训练集r为0.9967,RMSEC为0.310%,预测集的r为0.9541,RMSEP为0.870%。结果表明,完整茶叶样品所建立的PLS定量分析模型要优于粉末状茶叶所建立的模型。因此,利用近红外光谱技术可实现对红茶中茶多酚含量的快速、无损检测。