罗非鱼全雄养殖可有效控制繁殖、提高养殖效率,遗传全雄罗非鱼(Genetically male tilapia,GMT)技术是性别控制的高效手段,但GMT技术培育的鱼苗雄性率不稳定。基因组学和基因编辑等技术已广泛应用于罗非鱼研究,极大地促进了罗非鱼性别决...罗非鱼全雄养殖可有效控制繁殖、提高养殖效率,遗传全雄罗非鱼(Genetically male tilapia,GMT)技术是性别控制的高效手段,但GMT技术培育的鱼苗雄性率不稳定。基因组学和基因编辑等技术已广泛应用于罗非鱼研究,极大地促进了罗非鱼性别决定与分化基础理论研究。分析导致XY个体性别逆转的可能因素,提出将来GMT技术研究的关键问题,探讨现代基因编辑技术在罗非鱼性别控制育种中可能应用。展开更多
An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle...An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.展开更多
文摘罗非鱼全雄养殖可有效控制繁殖、提高养殖效率,遗传全雄罗非鱼(Genetically male tilapia,GMT)技术是性别控制的高效手段,但GMT技术培育的鱼苗雄性率不稳定。基因组学和基因编辑等技术已广泛应用于罗非鱼研究,极大地促进了罗非鱼性别决定与分化基础理论研究。分析导致XY个体性别逆转的可能因素,提出将来GMT技术研究的关键问题,探讨现代基因编辑技术在罗非鱼性别控制育种中可能应用。
基金This work was supported by the National Natural Science Foundation of China under Grant No.60578051.
文摘An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.