Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low e...Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.展开更多
The equilibrium geometries and electronic properties of CumSin (2 ≤m + n ≤ 7) clusters have been studied by using density functional theory at the B3LYP/6-311+G (d) level. Our results indicate that the structu...The equilibrium geometries and electronic properties of CumSin (2 ≤m + n ≤ 7) clusters have been studied by using density functional theory at the B3LYP/6-311+G (d) level. Our results indicate that the structure of CuSin (n 〈6) keeps the frame of the corresponding Sin cluster unchanged, while for CunSi clusters, the rectangular pyramid structure of Cu4Si is shown to be a building block in many structures of larger CunSi clusters. The growth patterns of CumSin clusters become more complicated as the number of Cu atoms increases. Both the binding energies and the fragmentation energies indicate that the Si-Si bond is stronger than the Cu-Si bond, and the latter is stronger than the Cu-Cu bond. Combining the fragmentation energies in the process CumSin →Cu+Cum-l Sin and the second-order difference △2E(m) against the number of Cu atoms of CumSin, we conclude that CumSin clusters with even number of Cu atoms have higher stabilities than those with odd rn. According to frontier orbital analyses, there exists a mixed ionic and covalent bonding picture between Cu and Si atoms, and the Cud orbitals contribute little to the Cu-Si bonding. For a certain cluster size (m + n = 3, 4, 5, 6, 7), the energy gaps of the most stable CumSin clusters show odd-even oscillation with changing m, the clusters with odd m exhibit stronger chemical reactivity than those with even m.展开更多
Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be...Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be well achieved by continuously tuning the band structure. Here the ZnS1–xSex nanobelt solid solutions have been prepared via thermal treatment of ZnS1–xSex(en)0.5 precursors. The compositions are adjusted by changing the mole ratio of Se to S powder in the starting materials, resulting in continuously modulating the alignment of energy levels of the obtained solid solutions. The band structure is also studied via theoretical calculation. Accordingly, the light harvesting can be tuned too, as confirmed by the UV-vis absorption spectra. XPS valence spectra are used to determine the valence band maximum. Transient photoluminescence spectra are employed to study the separation of photogenerated charge carriers. BET specific surface area and CO2 adsorption isotherms of different catalysts are measured. The obtained ZnS1–xSex nanobelts exhibit different photocatalytic activity for solar-fuel production, dependent on many factors like the light harvesting and alignment of energy levels. The related mechanism is studied in detail.展开更多
The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional ...The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O.The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states(DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.展开更多
基金supported by the Belt and Road Initiative by Chinese Academy of Sciencesthe National Natural Science Foundation of China(21673052,11404074)
文摘Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.
文摘The equilibrium geometries and electronic properties of CumSin (2 ≤m + n ≤ 7) clusters have been studied by using density functional theory at the B3LYP/6-311+G (d) level. Our results indicate that the structure of CuSin (n 〈6) keeps the frame of the corresponding Sin cluster unchanged, while for CunSi clusters, the rectangular pyramid structure of Cu4Si is shown to be a building block in many structures of larger CunSi clusters. The growth patterns of CumSin clusters become more complicated as the number of Cu atoms increases. Both the binding energies and the fragmentation energies indicate that the Si-Si bond is stronger than the Cu-Si bond, and the latter is stronger than the Cu-Cu bond. Combining the fragmentation energies in the process CumSin →Cu+Cum-l Sin and the second-order difference △2E(m) against the number of Cu atoms of CumSin, we conclude that CumSin clusters with even number of Cu atoms have higher stabilities than those with odd rn. According to frontier orbital analyses, there exists a mixed ionic and covalent bonding picture between Cu and Si atoms, and the Cud orbitals contribute little to the Cu-Si bonding. For a certain cluster size (m + n = 3, 4, 5, 6, 7), the energy gaps of the most stable CumSin clusters show odd-even oscillation with changing m, the clusters with odd m exhibit stronger chemical reactivity than those with even m.
文摘Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be well achieved by continuously tuning the band structure. Here the ZnS1–xSex nanobelt solid solutions have been prepared via thermal treatment of ZnS1–xSex(en)0.5 precursors. The compositions are adjusted by changing the mole ratio of Se to S powder in the starting materials, resulting in continuously modulating the alignment of energy levels of the obtained solid solutions. The band structure is also studied via theoretical calculation. Accordingly, the light harvesting can be tuned too, as confirmed by the UV-vis absorption spectra. XPS valence spectra are used to determine the valence band maximum. Transient photoluminescence spectra are employed to study the separation of photogenerated charge carriers. BET specific surface area and CO2 adsorption isotherms of different catalysts are measured. The obtained ZnS1–xSex nanobelts exhibit different photocatalytic activity for solar-fuel production, dependent on many factors like the light harvesting and alignment of energy levels. The related mechanism is studied in detail.
基金partially supported by the National Natural Science Foundation of China(No.11404074)
文摘The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O.The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states(DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.