A series of clusters Ni4P are designed to simulate the amorphous alloy Ni80P20. After the cluster models are computed by DFT, several stable structures are gained. Their geometric, electronic and catalytic properties ...A series of clusters Ni4P are designed to simulate the amorphous alloy Ni80P20. After the cluster models are computed by DFT, several stable structures are gained. Their geometric, electronic and catalytic properties have been analyzed and discussed. It is proved that cluster Ni4P can reflect the amorphous alloy Ni80P20 very well from the geometry parameters. We find the deformed triangle dipyramid with quadruplet state (configuration 1^(4)) is the most stable structure for cluster Ni4P, which is the most possible local structure in amorphous alloy Ni80P20. And the transition energy between two isomers with the same multiple state is higher than the one with the different. Bond Ni-P plays a very important role in offering the system stability for cluster Ni4E P is the electron donor, and Ni is the accepter in cluster Ni4P, which is in accordance with the experiment results. The 3d orbital populations and Fermi levels of clusters Ni4 have been decreased with the addition of atom E Based on the research of Fermi levels of clusters Ni4P to approach the Fermi level of H2 and their density of state (DOS), the highest catalytic active property in cluster Ni4P is owned to configuration 1^(4).展开更多
More than one hundred models were designed to reflect the local structure and electronic property of Ni-Fe amorphous alloys. After calculating by DFF method, a series of configurations of clusters NixFe and NiFex (x ...More than one hundred models were designed to reflect the local structure and electronic property of Ni-Fe amorphous alloys. After calculating by DFF method, a series of configurations of clusters NixFe and NiFex (x = 1 - 5) were gained. The configurations, which possessed the lowest energies and non-imaginary frequencies, were considered the most stable optimized structures. The catalytic activity, charge and magnetic properties were analyzed and discussed. The different Fe content changed the catalytic properties of clusters through altering the value of Fermi level of every cluster. However the density of state (DOS) nearby Fermi level and average 3d orbital population of atom Ni, which were also important properties related to the catalytic activation, were little changed. Based on the Fermi level, the activity of catalyst toward hydrogenation reaction would be considered best when the ratio of Ni to Fe was close to 1. The Fermi level of clusters was far distant to the level of nitrogen in singlet state. It would be the reason why the reaction condition in ammonia synthesis and nitrogen fixation process was rigorous. When Fe atom contents were higher than 75% (NiFe3), the electrons transferred from atom Fe to Ni, but when the ratio was decreased, the transfer was reversed. The ratio of atoms of local structure also played an important role in the aspect of electron transition. On the average 3d orbital population of atom Fe, the average magnetic moments of Fe atoms in clusters were calculated. When Fe atom contents were 50% nearly, the average magnetic moment achieved the highest point.展开更多
文摘A series of clusters Ni4P are designed to simulate the amorphous alloy Ni80P20. After the cluster models are computed by DFT, several stable structures are gained. Their geometric, electronic and catalytic properties have been analyzed and discussed. It is proved that cluster Ni4P can reflect the amorphous alloy Ni80P20 very well from the geometry parameters. We find the deformed triangle dipyramid with quadruplet state (configuration 1^(4)) is the most stable structure for cluster Ni4P, which is the most possible local structure in amorphous alloy Ni80P20. And the transition energy between two isomers with the same multiple state is higher than the one with the different. Bond Ni-P plays a very important role in offering the system stability for cluster Ni4E P is the electron donor, and Ni is the accepter in cluster Ni4P, which is in accordance with the experiment results. The 3d orbital populations and Fermi levels of clusters Ni4 have been decreased with the addition of atom E Based on the research of Fermi levels of clusters Ni4P to approach the Fermi level of H2 and their density of state (DOS), the highest catalytic active property in cluster Ni4P is owned to configuration 1^(4).
文摘More than one hundred models were designed to reflect the local structure and electronic property of Ni-Fe amorphous alloys. After calculating by DFF method, a series of configurations of clusters NixFe and NiFex (x = 1 - 5) were gained. The configurations, which possessed the lowest energies and non-imaginary frequencies, were considered the most stable optimized structures. The catalytic activity, charge and magnetic properties were analyzed and discussed. The different Fe content changed the catalytic properties of clusters through altering the value of Fermi level of every cluster. However the density of state (DOS) nearby Fermi level and average 3d orbital population of atom Ni, which were also important properties related to the catalytic activation, were little changed. Based on the Fermi level, the activity of catalyst toward hydrogenation reaction would be considered best when the ratio of Ni to Fe was close to 1. The Fermi level of clusters was far distant to the level of nitrogen in singlet state. It would be the reason why the reaction condition in ammonia synthesis and nitrogen fixation process was rigorous. When Fe atom contents were higher than 75% (NiFe3), the electrons transferred from atom Fe to Ni, but when the ratio was decreased, the transfer was reversed. The ratio of atoms of local structure also played an important role in the aspect of electron transition. On the average 3d orbital population of atom Fe, the average magnetic moments of Fe atoms in clusters were calculated. When Fe atom contents were 50% nearly, the average magnetic moment achieved the highest point.