针对EVaR(Expectile-based Value at Risk)风险度量提出了基于GARCH类和SV波动率模型的EVaR风险度量计算方法,即EVaR计算的参数模型方法.并基于模拟学生t分布时间序列数据,给出EVaR样本外预测的失败率检验方法:Kupiec失败率检验和动态...针对EVaR(Expectile-based Value at Risk)风险度量提出了基于GARCH类和SV波动率模型的EVaR风险度量计算方法,即EVaR计算的参数模型方法.并基于模拟学生t分布时间序列数据,给出EVaR样本外预测的失败率检验方法:Kupiec失败率检验和动态分位数(DQ)检验法.与采用CARE(Conditional Autoregressive Expectile)模型的EVaR计算方法进行了对比研究,结果表明基于GARCH类模型和SV模型相对于基于CARE模型有更优的EVaR预测效果.选取2004年1月5日到2009年12月30日的国内外五个股票市场指数数据,针对日对数收益率进行了EVaR风险度量的实证研究,得出在金融危机期间,基于参数模型的EVaR预测要比基于CARE模型的EVaR预测更接近市场实际风险.展开更多
文摘针对EVaR(Expectile-based Value at Risk)风险度量提出了基于GARCH类和SV波动率模型的EVaR风险度量计算方法,即EVaR计算的参数模型方法.并基于模拟学生t分布时间序列数据,给出EVaR样本外预测的失败率检验方法:Kupiec失败率检验和动态分位数(DQ)检验法.与采用CARE(Conditional Autoregressive Expectile)模型的EVaR计算方法进行了对比研究,结果表明基于GARCH类模型和SV模型相对于基于CARE模型有更优的EVaR预测效果.选取2004年1月5日到2009年12月30日的国内外五个股票市场指数数据,针对日对数收益率进行了EVaR风险度量的实证研究,得出在金融危机期间,基于参数模型的EVaR预测要比基于CARE模型的EVaR预测更接近市场实际风险.