贝叶斯网络(bayesian network,BN)小数据集条件下,定性最大后验概率(qualitative maximum a posteriori,QMAP)估计往往会违反给定的专家约束,这就导致QMAP估计偏离真实值。为了克服该算法的缺陷,提出了一种改进的QMAP算法。首先,学习出Q...贝叶斯网络(bayesian network,BN)小数据集条件下,定性最大后验概率(qualitative maximum a posteriori,QMAP)估计往往会违反给定的专家约束,这就导致QMAP估计偏离真实值。为了克服该算法的缺陷,提出了一种改进的QMAP算法。首先,学习出QMAP估计,再结合保序回归方法对违反不等式约束的参数进行校正;然后使用一种微调策略对校正后的参数做进一步调整,使所得参数能够满足专家约束;最后,与最大似然估计(maximum likelihood estimation,MLE)和QMAP算法对比。仿真实验结果表明:在小数据集条件下,提出的算法满足所有约束条件,KL(Kullback-Leibler)散度始终低于其他2种算法,运行时间高于其他2种算法约0.1 s,影响甚微,且推理结果贴近真实值,偏差维持在±0.05之间。改进的QMAP算法的综合性能优于MLE、QMAP算法,并具有较好的实用性。展开更多
针对配网通信现有技术以及配网对通信的需求,结合无线局域网鉴别和保密基础结构(wireless local area network authentication and privacy infrastructure,WAPI)Mesh的相关技术特性,提出一种针对配网通信覆盖的组网策略,实现配电光纤...针对配网通信现有技术以及配网对通信的需求,结合无线局域网鉴别和保密基础结构(wireless local area network authentication and privacy infrastructure,WAPI)Mesh的相关技术特性,提出一种针对配网通信覆盖的组网策略,实现配电光纤通信的有效延伸以及电房的配网通信覆盖,并以实际案例验证所提出组网策略的有效性和实用性。展开更多
文摘贝叶斯网络(bayesian network,BN)小数据集条件下,定性最大后验概率(qualitative maximum a posteriori,QMAP)估计往往会违反给定的专家约束,这就导致QMAP估计偏离真实值。为了克服该算法的缺陷,提出了一种改进的QMAP算法。首先,学习出QMAP估计,再结合保序回归方法对违反不等式约束的参数进行校正;然后使用一种微调策略对校正后的参数做进一步调整,使所得参数能够满足专家约束;最后,与最大似然估计(maximum likelihood estimation,MLE)和QMAP算法对比。仿真实验结果表明:在小数据集条件下,提出的算法满足所有约束条件,KL(Kullback-Leibler)散度始终低于其他2种算法,运行时间高于其他2种算法约0.1 s,影响甚微,且推理结果贴近真实值,偏差维持在±0.05之间。改进的QMAP算法的综合性能优于MLE、QMAP算法,并具有较好的实用性。
文摘针对配网通信现有技术以及配网对通信的需求,结合无线局域网鉴别和保密基础结构(wireless local area network authentication and privacy infrastructure,WAPI)Mesh的相关技术特性,提出一种针对配网通信覆盖的组网策略,实现配电光纤通信的有效延伸以及电房的配网通信覆盖,并以实际案例验证所提出组网策略的有效性和实用性。