This Letter describes an approach to encode complex-amplitude light waves with spatiotemporal double-phase holograms(DPHs) for overcoming the limit of the space-bandwidth product(SBP) delivered by existing methods. To...This Letter describes an approach to encode complex-amplitude light waves with spatiotemporal double-phase holograms(DPHs) for overcoming the limit of the space-bandwidth product(SBP) delivered by existing methods. To construct DPHs, two spatially macro-pixel encoded phase components are employed in the SBP-preserved resampling of complex holograms. Four generated sub-DPHs are displayed sequentially in time for high-quality holographic image reconstruction without reducing the image size or discarding any image terms when the DPHs are interweaved. The reconstructed holographic images contain more details and less speckle noise, with their signal-to-noise ratio and structure similarity index being improved by 14.64% and 78.79%,respectively.展开更多
基金supported by the National Natural Science Foundation of China (NSFC)(Nos. 61827825 and 61775117)Tsinghua University Initiative Scientific Research Program (No. 20193080075)the Cambridge Tsinghua Joint Research Initiative
文摘This Letter describes an approach to encode complex-amplitude light waves with spatiotemporal double-phase holograms(DPHs) for overcoming the limit of the space-bandwidth product(SBP) delivered by existing methods. To construct DPHs, two spatially macro-pixel encoded phase components are employed in the SBP-preserved resampling of complex holograms. Four generated sub-DPHs are displayed sequentially in time for high-quality holographic image reconstruction without reducing the image size or discarding any image terms when the DPHs are interweaved. The reconstructed holographic images contain more details and less speckle noise, with their signal-to-noise ratio and structure similarity index being improved by 14.64% and 78.79%,respectively.