期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合全局与空间多尺度上下文信息的车辆重识别 被引量:3
1
作者 王振学 许喆铭 +3 位作者 雪洋洋 郎丛妍 李尊 魏莉莉 《中国图象图形学报》 CSCD 北大核心 2023年第2期471-482,共12页
目的车辆重识别指判断不同摄像设备拍摄的车辆图像是否属于同一辆车的检索问题。现有车辆重识别算法使用车辆的全局特征或额外的标注信息,忽略了对多尺度上下文信息的有效抽取。对此,本文提出了一种融合全局与空间多尺度上下文信息的车... 目的车辆重识别指判断不同摄像设备拍摄的车辆图像是否属于同一辆车的检索问题。现有车辆重识别算法使用车辆的全局特征或额外的标注信息,忽略了对多尺度上下文信息的有效抽取。对此,本文提出了一种融合全局与空间多尺度上下文信息的车辆重识别模型。方法首先,设计一个全局上下文特征选择模块,提取车辆的细粒度判别信息,并且进一步设计了一个多尺度空间上下文特征选择模块,利用多尺度下采样的方式,从全局上下文特征选择模块输出的判别特征中获得其对应的多尺度特征。然后,选择性地集成来自多级特征的空间上下文信息,生成车辆图像的前景特征响应图,以此提升模型对于车辆空间位置特征的感知能力。最后,模型组合了标签平滑的交叉熵损失函数和三元组损失函数,以提升模型对强判别车辆特征的整体学习能力。结果在VeRi-776(vehicle re-idendification-776)数据集上,与模型PNVR(part-regularized near-duplicate vehicle re-identification)相比,本文模型的mAP(mean average precision)和rank-1(cumulative matching curve at rank 1)评价指标分别提升了2.3%和2.0%。在该数据集上的消融实验验证了各模块的有效性。在Vehicle ID数据集的大规模测试子集上,就rank-1和rank-5(cumulative matching curve at rank 5)而言,本文模型的mAP比PNVR分别提升了0.8%和4.5%。结论本文算法利用全局上下文特征和多尺度空间特征,提升了拍摄视角变化、遮挡等情况下车辆重识别的准确率,实验结果充分表明了所提模型的有效性与可行性。 展开更多
关键词 车辆重识别 深度学习 局部可区分性特征 特征选择 多尺度空间特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部