Van Hove singularities in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities.It is also known that a nontrivial Berry phase derived from spin–orbit coupling can ...Van Hove singularities in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities.It is also known that a nontrivial Berry phase derived from spin–orbit coupling can introduce an intriguing decoration into the interactions and thus alter correlated phenomena.However,it is unclear how and what type of new physics can emerge in a system featured by the interplay between van Hove singularities(VHSs)and the Berry phase.Here,based on a general Rashba model on the square lattice,we comprehensively explore such an interplay and its significant influence on the competing electronic instabilities by performing a parquet renormalization group analysis.Despite the existence of a variety of comparable fluctuations in the particle–particle and particle-hole channels associated with higher-order VHSs,we find that the chiral p±ip pairings emerge as two stable fixed trajectories within the generic interaction parameter space,namely the system becomes a robust topological superconductor.The chiral pairings stem from the hopping interaction induced by the nontrivial Berry phase.The possible experimental realization and implications are discussed.Our work sheds new light on the correlated states in quantum materials with strong spin–orbit coupling(SOC)and offers fresh insights into the exploration of topological superconductivity.展开更多
基金supports by the Ministry of Science and Technology(2022YFA1403901)the National Natural Science Foundation of China(11920101005,11888101,and 12047503)+2 种基金the New Cornerstone Investigator Programpartially supported by Chinese Academy of Sciences under contract No.JZHKYPT-2021–08supports from China Postdoctoral Science Foundation Fellowship(2022M723112)。
文摘Van Hove singularities in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities.It is also known that a nontrivial Berry phase derived from spin–orbit coupling can introduce an intriguing decoration into the interactions and thus alter correlated phenomena.However,it is unclear how and what type of new physics can emerge in a system featured by the interplay between van Hove singularities(VHSs)and the Berry phase.Here,based on a general Rashba model on the square lattice,we comprehensively explore such an interplay and its significant influence on the competing electronic instabilities by performing a parquet renormalization group analysis.Despite the existence of a variety of comparable fluctuations in the particle–particle and particle-hole channels associated with higher-order VHSs,we find that the chiral p±ip pairings emerge as two stable fixed trajectories within the generic interaction parameter space,namely the system becomes a robust topological superconductor.The chiral pairings stem from the hopping interaction induced by the nontrivial Berry phase.The possible experimental realization and implications are discussed.Our work sheds new light on the correlated states in quantum materials with strong spin–orbit coupling(SOC)and offers fresh insights into the exploration of topological superconductivity.