目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(...目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(Alzheimer′s disease neuroimaging initiative,ADNI),经随机森林填补缺失值,弹性网络筛选特征子集后,利用ADASYN与类别逆比例加权法处理类别不平衡数据。分别结合随机森林(random forest,RF)、支持向量机(support vector machine,SVM)构建四种模型:ADASYN-RF、ADASYN-SVM、加权随机森林(weighted random forest,WRF)、加权支持向量机(weighted support vector machine,WSVM),与RF、SVM比较分类性能。模型评价指标为宏观平均精确率(macro-average of precision,macro-P)、宏观平均召回率(macro-average of recall,macro-R)、宏观平均F1值(macro-average of F1-score,macro-F1)、准确率(accuracy,ACC)、Kappa值和AUC(area under the ROC curve)。结果ADASYN-RF的分类性能最优(Kappa值为0.938,AUC为0.980),ADASYN-SVM次之。利用ADASYN-RF预测得到的重要分类特征分别为CDRSB、LDELTOTAL、MMSE,在临床上均可得到证实。结论ADASYN与类别逆比例加权法都能辅助提升分类器性能,但ADASYN算法更优。展开更多
文摘目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(Alzheimer′s disease neuroimaging initiative,ADNI),经随机森林填补缺失值,弹性网络筛选特征子集后,利用ADASYN与类别逆比例加权法处理类别不平衡数据。分别结合随机森林(random forest,RF)、支持向量机(support vector machine,SVM)构建四种模型:ADASYN-RF、ADASYN-SVM、加权随机森林(weighted random forest,WRF)、加权支持向量机(weighted support vector machine,WSVM),与RF、SVM比较分类性能。模型评价指标为宏观平均精确率(macro-average of precision,macro-P)、宏观平均召回率(macro-average of recall,macro-R)、宏观平均F1值(macro-average of F1-score,macro-F1)、准确率(accuracy,ACC)、Kappa值和AUC(area under the ROC curve)。结果ADASYN-RF的分类性能最优(Kappa值为0.938,AUC为0.980),ADASYN-SVM次之。利用ADASYN-RF预测得到的重要分类特征分别为CDRSB、LDELTOTAL、MMSE,在临床上均可得到证实。结论ADASYN与类别逆比例加权法都能辅助提升分类器性能,但ADASYN算法更优。
文摘目的将共享随机效应模型(shared random-effect model,SREM)应用于轻度认知障碍(mild cognitive impairment,MCI)向认知正常(normal cognition,NC)逆转的研究,比较不同纵向认知标志物对MCI逆转的预测性能,并评价影响因素的协变量效应。方法SREM模型包括两个子模型,其中纵向子模型采用线性混合效应模型对纵向认知标志物的变化轨迹建模,生存子模型采用比例风险模型对生存过程建模。基于对数似然函数值和信息准则进行模型拟合优度检验,采用ROC曲线下面积(area under the curve,AUC)评价不同纵向认知标志物(MMSE、CDRSB、FAQ、ADAS11、ADAS13和ADASQ4)对MCI逆转的预测性能;同时进行纵向子模型和生存子模型的影响因素分析。结果843名MCI患者中72名(8.54%)在随访结束后逆转为NC。以spline-PH-GH参数分布为基准风险函数的SREM模型对数似然函数值最大,AIC和BIC最小;以CDRSB为纵向认知标志物建立的SREM模型拟合最好,在不同时间的AUC值均表现良好,范围为0.797~0.852,且预测误差最小,范围为0.0427~0.0429;年龄、性别、受教育程度、婚姻状况和APOEε4基因均会影响MCI患者的认知功能和日常活动功能,六种纵向认知标志物均会影响MCI患者的逆转。结论CDR评分对MCI患者的认知功能和逆转预测性能最佳;认知功能和日常活动功能可作为MCI逆转的动态监测指标。