The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differen...The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differentiate into mature neurons is critical to achieve the clinical applications of NSCs. At present, molecular mechanisms modulating NSC differentiation are not fully understood. Differentiation of stem cells into neuronal and glial cells involves an array of changes in expression of transcription factors. Transcription factors then trigger the expression of a variety of central nervous system (CNS) genes that lead NSCs to differentiate towards different cell types. In this paper, we summarized the recent findings on the gene regulation of NSCs differentiation into neuronal cells.展开更多
基金supported by the National Natural Science Foundation of China(No.30470587)the Natural Science Foundation of Jiangsu Province(No.BK2004037)the Department of Personnel of Jiangsu Province(No.L2134501).
文摘The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differentiate into mature neurons is critical to achieve the clinical applications of NSCs. At present, molecular mechanisms modulating NSC differentiation are not fully understood. Differentiation of stem cells into neuronal and glial cells involves an array of changes in expression of transcription factors. Transcription factors then trigger the expression of a variety of central nervous system (CNS) genes that lead NSCs to differentiate towards different cell types. In this paper, we summarized the recent findings on the gene regulation of NSCs differentiation into neuronal cells.