Lanthanide doped bifunctional materials are potentially important for developing multifunctional devices. Here, NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+ optical-magnetic bifunctional microcrystals were successfully synthesized by h...Lanthanide doped bifunctional materials are potentially important for developing multifunctional devices. Here, NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+ optical-magnetic bifunctional microcrystals were successfully synthesized by hydrothermal method, which could emit ~480 nm blue light from the1G4→3H6 electronic transition and ~800 nm infrared light from the3H4→3H6electronic transition of Tm3+ ion, under the excitation of 980 nm infrared light. By doping Sm3+ ion into NaLuF4:Yb3+/Tm3+/Gd3+, the infrared emission peak centered at 800 nm would shift obviously to longer wavelength. This indicated that Sm3+ ion could efficiently tune the energy level gaps of Tm3+ ions in NaLuF4 host which was demonstrated based on the crystal field theory. In addition, these NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+ microcrystals presented unique ferromagnetic property instead of usually reported paramagnetic prop-erty. Importantly, the ferromagnetic property decreased with increasing the concentration of Gd3+ ion. This was in good agreement with Swift’s theoretical investigation that the coexistence of light rare earth (Gd3+) and heavy rare earth (Yb3+/Tm3+) would lead to the anti-ferromagnetic coupling in the sub-lattices.展开更多
Lanthanide-based upconversion core-shell NaGdF4 nanocrystals with strong upconversion luminescence and biocompatibility were synthesized by the solvothermal method.The multicolor upconversion emission of these NaGdF4 ...Lanthanide-based upconversion core-shell NaGdF4 nanocrystals with strong upconversion luminescence and biocompatibility were synthesized by the solvothermal method.The multicolor upconversion emission of these NaGdF4 nanoparticles could be easily obtained by controlling the core-shell compositions.These multicolor core-shell NaGdF4 upconversion nanocrystals could be employed as fluorescent probes for imaging the mouse hair,by which the porous and scalelike structure of the mouse hair were presented clearly.Meanwhile,it was directly shown by fluorescent signals that the mouse hair could resist the corrosion of the strong acid even when the concentration of hydrochloric acid was increased to 36.5%,but could not avoid the carbonization at high temperature of 400 oC.This procedure based on upconversion fluorescent nanoprobes opens a novel route for investigating the basic physical structure and chemical properties of biological tissue and organism.展开更多
基金supported by the National Natural Science Foundation of China(61376076,61274026,21301058,61377024)the Scientific Research Fund of Hunan Provincial Education Department(14B060)+1 种基金the Science and Technology Plan Foundation of Hunan Province(2014FJ2017)the Innovation Foundation of Hunan University of Science and Technology(S140036)
文摘Lanthanide doped bifunctional materials are potentially important for developing multifunctional devices. Here, NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+ optical-magnetic bifunctional microcrystals were successfully synthesized by hydrothermal method, which could emit ~480 nm blue light from the1G4→3H6 electronic transition and ~800 nm infrared light from the3H4→3H6electronic transition of Tm3+ ion, under the excitation of 980 nm infrared light. By doping Sm3+ ion into NaLuF4:Yb3+/Tm3+/Gd3+, the infrared emission peak centered at 800 nm would shift obviously to longer wavelength. This indicated that Sm3+ ion could efficiently tune the energy level gaps of Tm3+ ions in NaLuF4 host which was demonstrated based on the crystal field theory. In addition, these NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+ microcrystals presented unique ferromagnetic property instead of usually reported paramagnetic prop-erty. Importantly, the ferromagnetic property decreased with increasing the concentration of Gd3+ ion. This was in good agreement with Swift’s theoretical investigation that the coexistence of light rare earth (Gd3+) and heavy rare earth (Yb3+/Tm3+) would lead to the anti-ferromagnetic coupling in the sub-lattices.
基金Project supported by the National Natural Science Foundation of China(21301058,61274026)Innovation Foundation of Hunan University of Science and Technology(S140036)
文摘Lanthanide-based upconversion core-shell NaGdF4 nanocrystals with strong upconversion luminescence and biocompatibility were synthesized by the solvothermal method.The multicolor upconversion emission of these NaGdF4 nanoparticles could be easily obtained by controlling the core-shell compositions.These multicolor core-shell NaGdF4 upconversion nanocrystals could be employed as fluorescent probes for imaging the mouse hair,by which the porous and scalelike structure of the mouse hair were presented clearly.Meanwhile,it was directly shown by fluorescent signals that the mouse hair could resist the corrosion of the strong acid even when the concentration of hydrochloric acid was increased to 36.5%,but could not avoid the carbonization at high temperature of 400 oC.This procedure based on upconversion fluorescent nanoprobes opens a novel route for investigating the basic physical structure and chemical properties of biological tissue and organism.