针对SVM等各类传统算法耗时过长,无法满足在线要求的问题,提出了一种基于广泛内核核向量机(ECVM)的大规模电力系统在线稳定评估算法。首先基于决策树算法对原始特征量进行特征筛选,然后基于ECVM分类器快速给出电力系统稳定状态的评估结...针对SVM等各类传统算法耗时过长,无法满足在线要求的问题,提出了一种基于广泛内核核向量机(ECVM)的大规模电力系统在线稳定评估算法。首先基于决策树算法对原始特征量进行特征筛选,然后基于ECVM分类器快速给出电力系统稳定状态的评估结果。该算法简化了最小闭包球问题中新球心的计算过程,避免了每次迭代都要解决QP问题,降低了算法的复杂度。在New England 39节点系统和某实际系统下的仿真结果表明了所提算法的优越性,为大规模电力系统的在线稳定评估提供了新思路。展开更多
文摘针对SVM等各类传统算法耗时过长,无法满足在线要求的问题,提出了一种基于广泛内核核向量机(ECVM)的大规模电力系统在线稳定评估算法。首先基于决策树算法对原始特征量进行特征筛选,然后基于ECVM分类器快速给出电力系统稳定状态的评估结果。该算法简化了最小闭包球问题中新球心的计算过程,避免了每次迭代都要解决QP问题,降低了算法的复杂度。在New England 39节点系统和某实际系统下的仿真结果表明了所提算法的优越性,为大规模电力系统的在线稳定评估提供了新思路。