基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及...基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。展开更多
为进一步提高温室黄瓜霜霉病诊断的准确率,构建了一个基于图像处理的温室黄瓜霜霉病诊断系统。针对温室黄瓜栽培现场采集的病害图像,采用基于条件随机场(Conditional random fields,CRF)的图像分割方法进行病斑图像分割,并采用决策树模...为进一步提高温室黄瓜霜霉病诊断的准确率,构建了一个基于图像处理的温室黄瓜霜霉病诊断系统。针对温室黄瓜栽培现场采集的病害图像,采用基于条件随机场(Conditional random fields,CRF)的图像分割方法进行病斑图像分割,并采用决策树模型扩展一元势函数,提高病斑图像分割的准确性;将分割后的病斑图像转换到HSV颜色空间并提取其颜色、纹理和形状等25个特征,利用粗糙集方法进行特征选择与优化;构建了基于径向基核函数的SVM分类器,准确地识别与诊断温室黄瓜霜霉病。系统试验验证结果表明,该系统采用的病斑分割方法,能够克服复杂背景和光照条件的影响,准确地提取病斑图像;采用粗糙集方法能够有效地选择分类特征,将25个初始特征减少到12个,提高了运行效率;黄瓜霜霉病识别准确率达到90%,能够满足设施蔬菜叶部病害诊断的需求。展开更多
针对温室现场环境下采集的黄瓜霜霉病叶片图像中存在光照不均匀和背景复杂的问题,提出了一种基于可见光光谱和支持向量机的温室黄瓜霜霉病图像分割方法。首先,提出了一种基于可见光谱的颜色特征CVCF(combination of three visible color...针对温室现场环境下采集的黄瓜霜霉病叶片图像中存在光照不均匀和背景复杂的问题,提出了一种基于可见光光谱和支持向量机的温室黄瓜霜霉病图像分割方法。首先,提出了一种基于可见光谱的颜色特征CVCF(combination of three visible color features)及其检测方法,该颜色特征将超红特征(excess red,ExR)、H分量和b*分量三种颜色特征结合,通过设置ExR参数,降低光照条件对ExR的影响,克服了光照不均匀对病斑分割的影响。在CVCF的基础上,结合基于径向基核函数的支持向量机分类器,通过优化分类器参数构建病斑分割模型,获得了温室黄瓜霜霉病图像初始分割结果。在初始分割结果基础上,采用SURF(speeded up robust features)特征及形态学操作,对分割结果进一步优化,消除背景噪声对分割结果的影响,从而获得最终病斑分割结果。为进一步验证方法的有效性,选择了OTSU算法、K均值聚类算法和决策树算法,作对比研究。结果表明,OTSU+H*0.2,K-means+H+b*,DT+H+b*和该研究算法的错分率分别为:19.44%,40.19%,16.27%和7.37%,该算法对温室现场环境下采集的黄瓜霜霉病图像的分割效果明显优于其他对比方法。该方法能够充分克服光照不均匀和复杂背景的影响准确地提取病斑,为病害识别提供了良好的数据来源。展开更多
文摘基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。
文摘为进一步提高温室黄瓜霜霉病诊断的准确率,构建了一个基于图像处理的温室黄瓜霜霉病诊断系统。针对温室黄瓜栽培现场采集的病害图像,采用基于条件随机场(Conditional random fields,CRF)的图像分割方法进行病斑图像分割,并采用决策树模型扩展一元势函数,提高病斑图像分割的准确性;将分割后的病斑图像转换到HSV颜色空间并提取其颜色、纹理和形状等25个特征,利用粗糙集方法进行特征选择与优化;构建了基于径向基核函数的SVM分类器,准确地识别与诊断温室黄瓜霜霉病。系统试验验证结果表明,该系统采用的病斑分割方法,能够克服复杂背景和光照条件的影响,准确地提取病斑图像;采用粗糙集方法能够有效地选择分类特征,将25个初始特征减少到12个,提高了运行效率;黄瓜霜霉病识别准确率达到90%,能够满足设施蔬菜叶部病害诊断的需求。
文摘针对温室现场环境下采集的黄瓜霜霉病叶片图像中存在光照不均匀和背景复杂的问题,提出了一种基于可见光光谱和支持向量机的温室黄瓜霜霉病图像分割方法。首先,提出了一种基于可见光谱的颜色特征CVCF(combination of three visible color features)及其检测方法,该颜色特征将超红特征(excess red,ExR)、H分量和b*分量三种颜色特征结合,通过设置ExR参数,降低光照条件对ExR的影响,克服了光照不均匀对病斑分割的影响。在CVCF的基础上,结合基于径向基核函数的支持向量机分类器,通过优化分类器参数构建病斑分割模型,获得了温室黄瓜霜霉病图像初始分割结果。在初始分割结果基础上,采用SURF(speeded up robust features)特征及形态学操作,对分割结果进一步优化,消除背景噪声对分割结果的影响,从而获得最终病斑分割结果。为进一步验证方法的有效性,选择了OTSU算法、K均值聚类算法和决策树算法,作对比研究。结果表明,OTSU+H*0.2,K-means+H+b*,DT+H+b*和该研究算法的错分率分别为:19.44%,40.19%,16.27%和7.37%,该算法对温室现场环境下采集的黄瓜霜霉病图像的分割效果明显优于其他对比方法。该方法能够充分克服光照不均匀和复杂背景的影响准确地提取病斑,为病害识别提供了良好的数据来源。