Nanocrystalline 2J4 alloy was fabricated by equal-channel angular pressing (ECAP). Microstructural evolution at different passes of ECAP and the effect of angle (φ) on the ECAP were researched. The results reveal th...Nanocrystalline 2J4 alloy was fabricated by equal-channel angular pressing (ECAP). Microstructural evolution at different passes of ECAP and the effect of angle (φ) on the ECAP were researched. The results reveal that α phase slowly turns to γ phase and follows the formation of dislocation cells in the 2J4 alloy with increasing severe plastic deformation. At last, it becomes reasonably finer bands of subgrains. The results with intersect at angle (φ) of 90° are better than that at angle (φ) of 120°. After three passes of ECAP, at angle φ of 90°, nanocrystalline microstructure can be obtained. The grain size is reduced from 30μm in the initial state to 400nm.展开更多
文摘Nanocrystalline 2J4 alloy was fabricated by equal-channel angular pressing (ECAP). Microstructural evolution at different passes of ECAP and the effect of angle (φ) on the ECAP were researched. The results reveal that α phase slowly turns to γ phase and follows the formation of dislocation cells in the 2J4 alloy with increasing severe plastic deformation. At last, it becomes reasonably finer bands of subgrains. The results with intersect at angle (φ) of 90° are better than that at angle (φ) of 120°. After three passes of ECAP, at angle φ of 90°, nanocrystalline microstructure can be obtained. The grain size is reduced from 30μm in the initial state to 400nm.