Let Ω be a bounded domain in R<sup>2</sup> with smooth boundary and Ω’ be the complementary set of Ω∪ .We consider the Neumann’s problem of parabolic equation as follow;Let τ be time step, t<su...Let Ω be a bounded domain in R<sup>2</sup> with smooth boundary and Ω’ be the complementary set of Ω∪ .We consider the Neumann’s problem of parabolic equation as follow;Let τ be time step, t<sub>k</sub>=k<sub>τ</sub> and u<sup>k</sup>(x)=u(x,t,). We discrete u/ t of (1) by use of difference and getwhereQ<sup>K</sup>=1/t(u<sup>K</sup>-u<sup>k-1</sup>-t u<sup>k</sup>/ t+f(u<sup>k</sup>)-f(u<sup>k-1</sup>).(2) is a family of Neumann’s boundary value problems of Helmholtz equation. Let E(x,y) be the funda-mental solution to Helmholtz equation, i. e.展开更多
针对化学驱采油中聚合物-表面活性剂-碱三元复合驱数学模型,提出一种顺序隐式求解算法。首先顺序隐式求解压力-组分浓度方程(implicit pressure and implicit concentration,IMPIMC),然后用牛顿雷弗森迭代方法求解化学反应平衡方程组;...针对化学驱采油中聚合物-表面活性剂-碱三元复合驱数学模型,提出一种顺序隐式求解算法。首先顺序隐式求解压力-组分浓度方程(implicit pressure and implicit concentration,IMPIMC),然后用牛顿雷弗森迭代方法求解化学反应平衡方程组;通过三元复合驱数值模拟,将该隐式算法和传统的隐式压力-显式组分浓度(implicit pressure and explicit concentration,IMPEC)方法进行了比较,结果表明,采用该隐式算法稳定性好,计算速度提高45%以上。展开更多
文摘Let Ω be a bounded domain in R<sup>2</sup> with smooth boundary and Ω’ be the complementary set of Ω∪ .We consider the Neumann’s problem of parabolic equation as follow;Let τ be time step, t<sub>k</sub>=k<sub>τ</sub> and u<sup>k</sup>(x)=u(x,t,). We discrete u/ t of (1) by use of difference and getwhereQ<sup>K</sup>=1/t(u<sup>K</sup>-u<sup>k-1</sup>-t u<sup>k</sup>/ t+f(u<sup>k</sup>)-f(u<sup>k-1</sup>).(2) is a family of Neumann’s boundary value problems of Helmholtz equation. Let E(x,y) be the funda-mental solution to Helmholtz equation, i. e.
文摘针对化学驱采油中聚合物-表面活性剂-碱三元复合驱数学模型,提出一种顺序隐式求解算法。首先顺序隐式求解压力-组分浓度方程(implicit pressure and implicit concentration,IMPIMC),然后用牛顿雷弗森迭代方法求解化学反应平衡方程组;通过三元复合驱数值模拟,将该隐式算法和传统的隐式压力-显式组分浓度(implicit pressure and explicit concentration,IMPEC)方法进行了比较,结果表明,采用该隐式算法稳定性好,计算速度提高45%以上。