针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每...针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能.展开更多
文摘针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能.
文摘针对基于模糊C均值聚类(fuzzy C-means,FCM)算法框架的竞争聚集聚类(competitive agglomeration,CA)算法中模糊指数m被限定为2的问题,提出了一种更为普适的模糊聚类新算法.该算法首先在FCM算法框架的基础上引入熵指数约束条件,构造了基于熵指数约束的模糊C均值聚类(entropy index constraint FCM,EIC-FCM)算法,成功地将模糊指数m>1的约束条件转换为熵指数0<r<1的约束条件,经分析该算法具备与经典FCM算法等效的聚类性能.其后进一步在EIC-FCM算法的框架下融入竞争学习机制得到基于熵指数约束的竞争聚集聚类(entropy index constraint CA,EICCA)算法,该算法由于使用(0,1)范围的熵指数约束而不再受到模糊指数仅为2的限制,增强了算法的适应性且更具普适性的特征.在模拟数据集以及UCI数据集上的实验结果同样表明,EICCA方法较之经典的CA算法性能更为优越,参数的选择更为灵活.