期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据驱动的可控变形叶型优化方法 被引量:1
1
作者 龙嘉明 潘天宇 +2 位作者 李宸璋 郑孟宗 李秋实 《航空动力学报》 EI CAS CSCD 北大核心 2023年第7期1703-1714,共12页
重点研究了综合考虑变形代价及气动收益的可控变形叶型优化设计方法。利用机器学习算法构建叶型几何与关键气动参数之间的预测模型,量化变形代价及气动收益,并搭建贝叶斯优化框架进行寻优。结果表明:基于机器学习的预测及优化框架能够... 重点研究了综合考虑变形代价及气动收益的可控变形叶型优化设计方法。利用机器学习算法构建叶型几何与关键气动参数之间的预测模型,量化变形代价及气动收益,并搭建贝叶斯优化框架进行寻优。结果表明:基于机器学习的预测及优化框架能够准确预测风扇变形后的气动性能,且在考虑变形代价的条件下对叶型变形收益边界进行评估。主要结论是利用机器学习算法结合叶斯寻优框架可以获得兼顾变形代价以及气动收益的变形方案。相比于单纯的气动优化方案,此方案可以在保证气动性能提升的同时,使叶片最大应力降低14.17%,压电片驱动能耗降低67.45%。 展开更多
关键词 超声风扇 可控变形 智能材料 机器学习 贝叶斯优化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部