Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition...Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition of a 50%C2I-I4/50%NH3 mixture using in situ X-ray diffraction (XRD) analysis, ex situ X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. It was shown that N-CNF growth at 450-650 ℃is accompanied by dissolution of carbon and nitrogen in the Ni-enriched alloy, whereas Cu-enriched alloy remains inactive. A correlation between nickel and copper surface concentrations and properties of N-CNFs in relation to the nitrogen content was found. It was demonstrated that phase composition of the catalyst during N-CNF growth determines the type of N-CNFs structure.展开更多
基金supported by the Federal Target Program "Scientific and Educational Personnel of Innovative Russia" 2009–2013 (Agreement 8429)RFBR Grant No 12-03-01091-a+2 种基金Presidium RAS (Project 2451)Presidium SB RAS (Project 36)Integration Research Projects SB RAS No 75
文摘Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition of a 50%C2I-I4/50%NH3 mixture using in situ X-ray diffraction (XRD) analysis, ex situ X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. It was shown that N-CNF growth at 450-650 ℃is accompanied by dissolution of carbon and nitrogen in the Ni-enriched alloy, whereas Cu-enriched alloy remains inactive. A correlation between nickel and copper surface concentrations and properties of N-CNFs in relation to the nitrogen content was found. It was demonstrated that phase composition of the catalyst during N-CNF growth determines the type of N-CNFs structure.