The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Fault tree analysis is an effective method for predicting the reliability of a system. It gives a pictorial representation and logical framework for analyzing the reliability. Also, it has been used for a long time as...Fault tree analysis is an effective method for predicting the reliability of a system. It gives a pictorial representation and logical framework for analyzing the reliability. Also, it has been used for a long time as an effective method for the quantitative and qualitative analysis of the failure modes of critical systems. In this paper, we propose a new general coverage model (GCM) based on hardware independent faults. Using this model, an effective software tool can be constructed to detect, locate and recover fault from the faulty system. This model can be applied to identify the key component that can cause the failure of the system using failure mode effect analysis (FMEA).展开更多
Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicl...Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicles, disruption to transportation, injuries and fatalities. The massive rockfall event which occurred in April 2017 on the highway NH-44 A, near Lengpui Airport, blocked the traffic for 1 d, and fortunately,no casualties were reported as the event occurred in the night. This is the only highway connecting the Aizawl city to the airport and the region is highly prone to rockfall events. Hence assessment of rockfall along this highway is necessary. In the current study, rockfall hazard assessment has been carried out on three locations by rockfall hazard rating system(RHRS). During pre-failure analysis, the result shows that most hazardous slopes have RHRS score of 639. The slopes were found to be vulnerable and later on the rockfall activity occurred. Three-dimensional(3 D) stability analysis has been carried out using 3 DEC software package to analyze the failure behavior and to decide the rockfall-prone zone(unstable blocks)for slope. The total displacement of 2.24 cm and velocity of 2,25 mm/s of the failed block have been observed in the numerical analysis. Further, the rockfall vulnerable zone(unstable blocks) is considered to determine the parameters such as run-out distance, bounce height and energies of the falling rock blocks. The maximum total kinetic energy of 5047 kJ has been observed in the numerical analysis with the maximum run-out distance up to 18 m.展开更多
Driven by market requirements, software services organizations have adopted various software engineering process models (such as capability maturity model (CMM), capability maturity model integration (CMMI), ISO ...Driven by market requirements, software services organizations have adopted various software engineering process models (such as capability maturity model (CMM), capability maturity model integration (CMMI), ISO 9001:2000, etc.) and practice of the project management concepts defined in the project management body of knowledge. While this has definitely helped organizations to bring some methods into the software development madness, there always exists a demand for comparing various groups within the organization in terms of the practice of these defined process models. Even though there exist many metrics for comparison, considering the variety of projects in terms of technology, life cycle, etc., finding a single metric that caters to this is a difficult task. This paper proposes a model for arriving at a rating on group maturity within the organization. Considering the linguistic or imprecise and uncertain nature of software measurements, fuzzy logic approach is used for the proposed model. Without the barriers like technology or life cycle difference, the proposed model helps the organization to compare different groups within it with reasonable precision.展开更多
Quantitative safety assessment of safety systems plays an important role in decision making at all stages of system lifecycle, i.e., design, deployment and phase out. Most safety assessment methods consider only syste...Quantitative safety assessment of safety systems plays an important role in decision making at all stages of system lifecycle, i.e., design, deployment and phase out. Most safety assessment methods consider only system parameters, such as configuration, hazard rate, coverage, repair rate, etc. along with periodic proof-tests (or inspection). Not considering demand rate will give a pessimistic safety estimate for an application with low demand rate such as nuclear power plants, chemical plants, etc. In this paper, a basic model of IEC 61508 is used. The basic model is extended to incorporate process demand and behavior of electronic- and/or computer-based system following diagnosis or proof-test. A new safety index, probability of failure on actual demand (PFAD) based on extended model and demand rate is proposed. Periodic proof-test makes the model semi-Markovian, so a piece-wise continuous time Markov chain (CTMC) based method is used to derive mean state probabilities of elementary or aggregated state. Method to determine probability of failure on demand (PFD) (IEC 61508) and PFAD based on these state probabilities are described. In example, safety indices of PFD and PFAD are compared.展开更多
Antibiotics, often supplemented in feed, used as a growth promoter, may cause their residual effect in animal produce and also trigger antibiotic resistance in bacteria, which is of serious concern among swine farming...Antibiotics, often supplemented in feed, used as a growth promoter, may cause their residual effect in animal produce and also trigger antibiotic resistance in bacteria, which is of serious concern among swine farming entrepreneurs. As an alternative, supplementing probiotics gained interest in recent years.Lactobacillus being the most commonly used probiotic agent improves growth performance, feed conversion efficiency, nutrient utilization, intestinal microbiota, gut health and regulates immune system in pigs. The characteristics of Lactobacillus spp. and their probiotic effects in swine production are reviewed here under.展开更多
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
文摘Fault tree analysis is an effective method for predicting the reliability of a system. It gives a pictorial representation and logical framework for analyzing the reliability. Also, it has been used for a long time as an effective method for the quantitative and qualitative analysis of the failure modes of critical systems. In this paper, we propose a new general coverage model (GCM) based on hardware independent faults. Using this model, an effective software tool can be constructed to detect, locate and recover fault from the faulty system. This model can be applied to identify the key component that can cause the failure of the system using failure mode effect analysis (FMEA).
基金the Ministry of Earth Sciences,Government of India(MoES/P.O(Geosci)/42/2015)for the grant to carry out this study
文摘Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicles, disruption to transportation, injuries and fatalities. The massive rockfall event which occurred in April 2017 on the highway NH-44 A, near Lengpui Airport, blocked the traffic for 1 d, and fortunately,no casualties were reported as the event occurred in the night. This is the only highway connecting the Aizawl city to the airport and the region is highly prone to rockfall events. Hence assessment of rockfall along this highway is necessary. In the current study, rockfall hazard assessment has been carried out on three locations by rockfall hazard rating system(RHRS). During pre-failure analysis, the result shows that most hazardous slopes have RHRS score of 639. The slopes were found to be vulnerable and later on the rockfall activity occurred. Three-dimensional(3 D) stability analysis has been carried out using 3 DEC software package to analyze the failure behavior and to decide the rockfall-prone zone(unstable blocks)for slope. The total displacement of 2.24 cm and velocity of 2,25 mm/s of the failed block have been observed in the numerical analysis. Further, the rockfall vulnerable zone(unstable blocks) is considered to determine the parameters such as run-out distance, bounce height and energies of the falling rock blocks. The maximum total kinetic energy of 5047 kJ has been observed in the numerical analysis with the maximum run-out distance up to 18 m.
文摘Driven by market requirements, software services organizations have adopted various software engineering process models (such as capability maturity model (CMM), capability maturity model integration (CMMI), ISO 9001:2000, etc.) and practice of the project management concepts defined in the project management body of knowledge. While this has definitely helped organizations to bring some methods into the software development madness, there always exists a demand for comparing various groups within the organization in terms of the practice of these defined process models. Even though there exist many metrics for comparison, considering the variety of projects in terms of technology, life cycle, etc., finding a single metric that caters to this is a difficult task. This paper proposes a model for arriving at a rating on group maturity within the organization. Considering the linguistic or imprecise and uncertain nature of software measurements, fuzzy logic approach is used for the proposed model. Without the barriers like technology or life cycle difference, the proposed model helps the organization to compare different groups within it with reasonable precision.
文摘Quantitative safety assessment of safety systems plays an important role in decision making at all stages of system lifecycle, i.e., design, deployment and phase out. Most safety assessment methods consider only system parameters, such as configuration, hazard rate, coverage, repair rate, etc. along with periodic proof-tests (or inspection). Not considering demand rate will give a pessimistic safety estimate for an application with low demand rate such as nuclear power plants, chemical plants, etc. In this paper, a basic model of IEC 61508 is used. The basic model is extended to incorporate process demand and behavior of electronic- and/or computer-based system following diagnosis or proof-test. A new safety index, probability of failure on actual demand (PFAD) based on extended model and demand rate is proposed. Periodic proof-test makes the model semi-Markovian, so a piece-wise continuous time Markov chain (CTMC) based method is used to derive mean state probabilities of elementary or aggregated state. Method to determine probability of failure on demand (PFD) (IEC 61508) and PFAD based on these state probabilities are described. In example, safety indices of PFD and PFAD are compared.
文摘Antibiotics, often supplemented in feed, used as a growth promoter, may cause their residual effect in animal produce and also trigger antibiotic resistance in bacteria, which is of serious concern among swine farming entrepreneurs. As an alternative, supplementing probiotics gained interest in recent years.Lactobacillus being the most commonly used probiotic agent improves growth performance, feed conversion efficiency, nutrient utilization, intestinal microbiota, gut health and regulates immune system in pigs. The characteristics of Lactobacillus spp. and their probiotic effects in swine production are reviewed here under.