The grain density,Nv,in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling,ΔT,of a liquid alloy.This type of function depends on the characteristics of heterogeneous nucl...The grain density,Nv,in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling,ΔT,of a liquid alloy.This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy.The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling.This model in connection with model of crystallisation,which is based on chemical elements diffusion and grain interface kinetics,can be used to predict casting quality and its microstructure.Nucleation models have parameters,which exact values are usually not known and sometimes even their physical meaning is under discussion.Those parameters can be obtained after mathematical analysis of the experimental data.The composites with 0,1,2,3 and 4wt.% of SiC particles were prepared.The AZ91 alloy was a matrix of the composite reinforcement SiC particles.This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple,to analyze the undercooling for different composites and thickness plates and its influence on the grain size.The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles,and undercooling with grain size.These values were used to approximate nucleation model adjustment parameters.Obtained model can be very useful in modelling composites microstructure.展开更多
Multicomponent alloys of Zr_(50)M_(50),Zr_(50)(M,Ag)_(50)and Zr_(50)(M,Pd)_(50)(M=Fe,Co,Ni,Cu)can be melt-spun to obtain amorphous ribbons.The maximum thickness for fully amorphous ribbons varies with composition in t...Multicomponent alloys of Zr_(50)M_(50),Zr_(50)(M,Ag)_(50)and Zr_(50)(M,Pd)_(50)(M=Fe,Co,Ni,Cu)can be melt-spun to obtain amorphous ribbons.The maximum thickness for fully amorphous ribbons varies with composition in the range 34-53μm.In contrast,fully amorphous ribbons are not obtainable for binary Zr_(50)Ni_(50)or ternary Zr_(50)(Ni,Cu)_(50)alloys.Heating-induced crystallization occurs through:two stages of amorphous[am]→[~(am')+B2]→[B2+B33]for Zr_(50)M_(50);and[am]→[am'+B2]→[B2+AgZr]for Zr_(50)(M,Ag)_(50);and a single stage of[am]→[B2]for Zr_(50)(M,Pd)_(50),while no B2 phase is formed for the binary and ternary Zr_(50)Q_(50)(Q=Ni or/and Cu)alloys.As-spun amorphous ribbons have good bending plasticity.Remarkably,Zr_(50)M_(50)ribbons in tension show 0.22-0.28%plastic elongation and work-hardening(the yield stress is~820 MPa,the fracture stress is~1200 MPa).When cold-rolled at room temperature to 30%reduction in thickness,Zr_(50)M_(50)ribbons show 10%increase in hardness,while retaining good bending plasticity.Cold-rolling induces precipitation of spheroidal B2 and irregular B33 particles,while deformation in tension induces B2,B33 and also plate-like monoclinic precipitates.The B2 and B33 particles form by polymorphic transformation,and include a high density of internal defects.This novel deformationinduced precipitation has not been recognized for any Zr_(50)Q_(50)binary or ternary alloys.The new multicomponent systems are encouraging for future progress as structural amorphous alloys.展开更多
基金supported financially by the European Community under Marie Curie Transfer of Knowledge grant No. MTKD-CT-2006-042468 (AGH No.27.27.170.304)Polish Ministry of Science and Higher Education for financial support under grant No. N507-44-66-34 (AGH No.18.18.170.325)
文摘The grain density,Nv,in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling,ΔT,of a liquid alloy.This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy.The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling.This model in connection with model of crystallisation,which is based on chemical elements diffusion and grain interface kinetics,can be used to predict casting quality and its microstructure.Nucleation models have parameters,which exact values are usually not known and sometimes even their physical meaning is under discussion.Those parameters can be obtained after mathematical analysis of the experimental data.The composites with 0,1,2,3 and 4wt.% of SiC particles were prepared.The AZ91 alloy was a matrix of the composite reinforcement SiC particles.This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple,to analyze the undercooling for different composites and thickness plates and its influence on the grain size.The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles,and undercooling with grain size.These values were used to approximate nucleation model adjustment parameters.Obtained model can be very useful in modelling composites microstructure.
基金support from the Recruitment Program of Global Experts“1000 Talents Plan”(Grant No.WQ20121200052)the National Natural Science Foundation of China(Grant No.51771131)+2 种基金the Deanship of Scientific Research(DSR),at King Abdulaziz University,Jeddah,Saudi Arabia funded this project,under Grant No.(FP-101-42)the Ministry of Education and Science of the Russian Federation in the framework of the program aimed to increase the competitiveness of the National University of Science and Technology,“MISiS”(Grant No.K2-2019-002)support from the European Research Council under the European Union’s Horizon 2020 research and innovation program(Grant No.ERC-2015-Ad G-695487:Extend Glass)。
文摘Multicomponent alloys of Zr_(50)M_(50),Zr_(50)(M,Ag)_(50)and Zr_(50)(M,Pd)_(50)(M=Fe,Co,Ni,Cu)can be melt-spun to obtain amorphous ribbons.The maximum thickness for fully amorphous ribbons varies with composition in the range 34-53μm.In contrast,fully amorphous ribbons are not obtainable for binary Zr_(50)Ni_(50)or ternary Zr_(50)(Ni,Cu)_(50)alloys.Heating-induced crystallization occurs through:two stages of amorphous[am]→[~(am')+B2]→[B2+B33]for Zr_(50)M_(50);and[am]→[am'+B2]→[B2+AgZr]for Zr_(50)(M,Ag)_(50);and a single stage of[am]→[B2]for Zr_(50)(M,Pd)_(50),while no B2 phase is formed for the binary and ternary Zr_(50)Q_(50)(Q=Ni or/and Cu)alloys.As-spun amorphous ribbons have good bending plasticity.Remarkably,Zr_(50)M_(50)ribbons in tension show 0.22-0.28%plastic elongation and work-hardening(the yield stress is~820 MPa,the fracture stress is~1200 MPa).When cold-rolled at room temperature to 30%reduction in thickness,Zr_(50)M_(50)ribbons show 10%increase in hardness,while retaining good bending plasticity.Cold-rolling induces precipitation of spheroidal B2 and irregular B33 particles,while deformation in tension induces B2,B33 and also plate-like monoclinic precipitates.The B2 and B33 particles form by polymorphic transformation,and include a high density of internal defects.This novel deformationinduced precipitation has not been recognized for any Zr_(50)Q_(50)binary or ternary alloys.The new multicomponent systems are encouraging for future progress as structural amorphous alloys.