This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
Smart Urbanization has increased tremendously over the last few years,and this has exacerbated problems in all areas of life,especially in the energy sector.The Internet of Things(IoT)is providing effective solutions ...Smart Urbanization has increased tremendously over the last few years,and this has exacerbated problems in all areas of life,especially in the energy sector.The Internet of Things(IoT)is providing effective solutions in gas distribution,transmission and billing through very sophisticated sensory devices and software.Billions of heterogeneous devices link to each other in smart urbanization,and this has led to the Semantic interoperability(SI)problem between the connected devices.In the energy field,such as electricity and gas,several devices are interlinked.These devices are competent for their specific operational role but unable to communicate across the operational units as required for accounting and monitoring of gas losses due to heterogeneity in device communication standards.To overcome this problem,we have proposed a model and ontology by applying semantic web technologies and cloud storage to address the tracking of customers to observe Unaccounted for gas(UFG)in the gas domain of energy.Semantization is achieved by replicating heterogeneous devices Sensor Model Language(SenML)data into Resource description framework(RDF)without human interventions.As semantic interoperability is used to efficiently and meaningfully share the information from one location to another.Therefore,the proposed ontology and model focus more efficiently on customer tracking,forecasting,and monitoring to detect UFG in gas networks.This also helps to save Gas Companies from financial gas losses.展开更多
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
文摘Smart Urbanization has increased tremendously over the last few years,and this has exacerbated problems in all areas of life,especially in the energy sector.The Internet of Things(IoT)is providing effective solutions in gas distribution,transmission and billing through very sophisticated sensory devices and software.Billions of heterogeneous devices link to each other in smart urbanization,and this has led to the Semantic interoperability(SI)problem between the connected devices.In the energy field,such as electricity and gas,several devices are interlinked.These devices are competent for their specific operational role but unable to communicate across the operational units as required for accounting and monitoring of gas losses due to heterogeneity in device communication standards.To overcome this problem,we have proposed a model and ontology by applying semantic web technologies and cloud storage to address the tracking of customers to observe Unaccounted for gas(UFG)in the gas domain of energy.Semantization is achieved by replicating heterogeneous devices Sensor Model Language(SenML)data into Resource description framework(RDF)without human interventions.As semantic interoperability is used to efficiently and meaningfully share the information from one location to another.Therefore,the proposed ontology and model focus more efficiently on customer tracking,forecasting,and monitoring to detect UFG in gas networks.This also helps to save Gas Companies from financial gas losses.