In this paper, an exact analytical propagation formula of Finite Olver-Gaussian Beams (FOGBs) passing through a paraxial ABCD optical system is developed and some numerical examples are performed. The propagation prop...In this paper, an exact analytical propagation formula of Finite Olver-Gaussian Beams (FOGBs) passing through a paraxial ABCD optical system is developed and some numerical examples are performed. The propagation properties of the FOGBs through general optical systems characterized by given ABCD matrix are studied on the basis of the generalized Huygens-Fresnel diffraction integral, which permits to show the behavior of this laser beams family and its properties de-pending of the laser parameters. This research is of interest to prove some investigations done in the past by other researchers.展开更多
In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs ...In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs on a Rayleigh dielectric sphere. Our numerical results show that the FOGBs can be employed to trap and manipulate particles with the refractive index larger than that of the ambient. The radiation force distribution has been studied under different beam widths. The trapping stability under different conditions is also analyzed.展开更多
Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansi...Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD optical system are derived here as particular cases of the main finding. Some numerical simulations are performed in the paper.展开更多
In this paper, we introduce a new class of scalar nondiffracting Helmholtz-equation solution. We demonstrate that this novel wave-equation solution has some specific orders;among these ordinary Airy beams which are re...In this paper, we introduce a new class of scalar nondiffracting Helmholtz-equation solution. We demonstrate that this novel wave-equation solution has some specific orders;among these ordinary Airy beams which are regarded as the zeroth order. Moreover, a general expression of these novel beams, which are named Olver Beams and referred to OBs, is developed. The zeroth and the first high orders of the incident OBs are presented theoretically and numerically in this paper. Yet, based on a computer generated holograms method, the generation’s masks of the Finite OBs in first orders are given in this work. Also, the incident transverse intensity distribution in 1-D and 2-D of the first orders of OBs is performed.展开更多
Based on the Collins diffraction formula and by means of the expansion of a hard aperture function into a finite sum of complex Gaussian functions, two analytical approaches of the Finite Olver beams (FOBs) passing th...Based on the Collins diffraction formula and by means of the expansion of a hard aperture function into a finite sum of complex Gaussian functions, two analytical approaches of the Finite Olver beams (FOBs) passing through a paraxial ABCD optical system with a circular annular aperture or a rectangular one are developed in this paper. The propagation properties of the FOBs through an unapertured ABCD optical system or through this last with a circular (or rectangular) aperture or a circular (or rectangular) black screen are deduced, from the main results, as particular cases. Also, the characteristics of Finite ordinary Airy beam passing through the all considered optical systems are derived here that correspond to zeroth-order of the FOBs. According to the predicted formulas, computer simulation examples are given to deepen the understanding of the characteristics of the FOBs passing through some optical systems of annular aperture basis.展开更多
The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The propertie...The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The properties of the propagation of MBG beam traveling through this misaligned ABCD optical system are discussed. A special case of misaligned circular thin lens is illustrated analytically and numerically. The shape of the MBG beam at the exit of the misaligned optical system is unchanged;however the center of the beam is shifted from the propagation axis in correlated manner with the design parameters of the optical system.展开更多
文摘In this paper, an exact analytical propagation formula of Finite Olver-Gaussian Beams (FOGBs) passing through a paraxial ABCD optical system is developed and some numerical examples are performed. The propagation properties of the FOGBs through general optical systems characterized by given ABCD matrix are studied on the basis of the generalized Huygens-Fresnel diffraction integral, which permits to show the behavior of this laser beams family and its properties de-pending of the laser parameters. This research is of interest to prove some investigations done in the past by other researchers.
文摘In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs on a Rayleigh dielectric sphere. Our numerical results show that the FOGBs can be employed to trap and manipulate particles with the refractive index larger than that of the ambient. The radiation force distribution has been studied under different beam widths. The trapping stability under different conditions is also analyzed.
文摘Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD optical system are derived here as particular cases of the main finding. Some numerical simulations are performed in the paper.
文摘In this paper, we introduce a new class of scalar nondiffracting Helmholtz-equation solution. We demonstrate that this novel wave-equation solution has some specific orders;among these ordinary Airy beams which are regarded as the zeroth order. Moreover, a general expression of these novel beams, which are named Olver Beams and referred to OBs, is developed. The zeroth and the first high orders of the incident OBs are presented theoretically and numerically in this paper. Yet, based on a computer generated holograms method, the generation’s masks of the Finite OBs in first orders are given in this work. Also, the incident transverse intensity distribution in 1-D and 2-D of the first orders of OBs is performed.
文摘Based on the Collins diffraction formula and by means of the expansion of a hard aperture function into a finite sum of complex Gaussian functions, two analytical approaches of the Finite Olver beams (FOBs) passing through a paraxial ABCD optical system with a circular annular aperture or a rectangular one are developed in this paper. The propagation properties of the FOBs through an unapertured ABCD optical system or through this last with a circular (or rectangular) aperture or a circular (or rectangular) black screen are deduced, from the main results, as particular cases. Also, the characteristics of Finite ordinary Airy beam passing through the all considered optical systems are derived here that correspond to zeroth-order of the FOBs. According to the predicted formulas, computer simulation examples are given to deepen the understanding of the characteristics of the FOBs passing through some optical systems of annular aperture basis.
文摘The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The properties of the propagation of MBG beam traveling through this misaligned ABCD optical system are discussed. A special case of misaligned circular thin lens is illustrated analytically and numerically. The shape of the MBG beam at the exit of the misaligned optical system is unchanged;however the center of the beam is shifted from the propagation axis in correlated manner with the design parameters of the optical system.